Have a personal or library account? Click to login
Generation of H2 on Board Lng Vessels for Consumption in the Propulsion System Cover

Generation of H2 on Board Lng Vessels for Consumption in the Propulsion System

Open Access
|Apr 2020

References

  1. 1. Aguilera R. F., Aguilera R. (2012): World natural gas endowment as a bridge towards zero carbon emissions. Technol. Forecast Soc. Change, 79(3), 579-86.10.1016/j.techfore.2011.09.004
  2. 2. Air Liquide, www.airliquide.com [accessed 20.11.16].
  3. 3. Arias Fernández I., Romero Gómez M., Baaliña Insua A. (2017): Review of propulsion systems on LNG carriers. Renewable and Sustainable Energy Reviews, 67, 1395-1411.10.1016/j.rser.2016.09.095
  4. 4. Arias Fernández I., Romero Gómez M., Romero Gómez J., López-González L. M. (2017): H2 production by the steam reforming of excess boil off gas on LNG vessels. Energy Conversion and Management, 134(February), 301-313.10.1016/j.enconman.2016.12.047
  5. 5. Belz S. (2016): A synergetic use of hydrogen and fuel cells in human spaceflight power systems. Acta Astronautica, 121, 323-331.10.1016/j.actaastro.2015.05.031
  6. 6. Burel F., Taccani R., Zuliani N. (2013): Improving sustainability of maritime transport through utilization of Liquefied Natural Gas (LNG) for propulsion. Energy, 57, 412-420.10.1016/j.energy.2013.05.002
  7. 7. Chang D., Rhee T., Nam K., Chang K., Lee D., Jeong S. (2008): A study on availability and safety of new propulsion systems for LNG carriers. Reliab. Eng. Syst. Saf., 93(12), 1877-85.10.1016/j.ress.2008.03.013
  8. 8. Lin C.-Y. (2013): Strategies for promoting biodiesel use in marine vessels. Marine Policy, 40, 84-90.10.1016/j.marpol.2013.01.003
  9. 9. Chilev C., Darkrim Lamari F. (2016): Hydrogen storage at low temperature and high pressure for application in automobile manufacturing. International Journal of Hydrogen Energy, 41, 744-175810.1016/j.ijhydene.2015.11.099
  10. 10. Rao D., Wang Y., Meng Z., Yao S., Chen X., Shen X., Lu R. (2015): Theoretical study of H2 adsorption on metal-doped graphene sheets with nitrogen-substituted defects. International Journal of Hydrogen Energy, 40, 14154-14162.10.1016/j.ijhydene.2015.08.107
  11. 11. Dincer I., Canan A. (2015): Review and evaluation of hydrogen production methods for better sustainability. International Journal of Hydrogen Energy, 40, 11094-11111.10.1016/j.ijhydene.2014.12.035
  12. 12. Dincer I. (2012): Green methods for hydrogen production. International Journal of Hydrogen Energy, 37, 1954-1971.10.1016/j.ijhydene.2011.03.173
  13. 13. Yeo D., Ahn B., Kim J., Kim I. Propulsion alternatives for modern LNG carriers. Samsung Heavy Industries Co., Ltd., Paper PS6-S.
  14. 14. Dobrota D., Lalić B., Komar I. (2013): Problem of Boil-off in LNG Supply Chain. Regular papers, Transactions on Maritime Science, 02, 91-100.10.7225/toms.v02.n02.001
  15. 15. Sciberras E. A., Zahawi B., Atkinson D. J. (2015): Electrical characteristics of cold ironing energy supply for berthed ships. Transportation Research Part D, 39, 31-43.10.1016/j.trd.2015.05.007
  16. 16. Attah E. E., Bucknall R. (2015): An analysis of the energy efficiency of LNG ships power in options using the EEDI. Ocean Engineering, 110, 62-74.10.1016/j.oceaneng.2015.09.040
  17. 17. Exxonmobil, www.corporate.exxonmobil.com [accessed 20.11.16].
  18. 18. Omar F., Szpunar J. A., Szpunar B., Beye A. C. (2016): Hydrogen adsorption and storage on palladium – functionalized graphene with NH-dopant: A first principles calculation. Applied Surface Science, Available online September 2016
  19. 19. Gas Natural Fenosa. www.gasnaturalfenosa.com [accessed 19.11.16].
  20. 20. Gutiérrez J. L. (2005): El hidrógeno, combustible del futuro. Rev. R. Acad. Cienc. Exact. Fís. Nat. (Esp), 99(1), 49-67. V Programa de Promoción de la Cultura Científica y Tecnológica.
  21. 21. Lindstad H., Sandaas I., Strømman A. H. (2015): Assessment of cost as a function of abatement options in maritime emission control areas. Transportation Research Part D, 38, 41-48.10.1016/j.trd.2015.04.018
  22. 22. Xiao J., Zhou T., Cossement D., Bénard P., Chahine R. (2013): Coupled thermal simulation of hydrogen storage tank-Dewar flask system. International Journal of Hydrogen Energy, 38(25), 10880-88.10.1016/j.ijhydene.2013.03.117
  23. 23. Fagerholt K., Gausel N. T., Rakke J. G., Psaraftis H. N. (2015): Maritime routing and speed optimization with emission control areas. Transportation Research Part C, 52, 57-73.10.1016/j.trc.2014.12.010
  24. 24. Klein S. A. (2012): Engineering Equation Solver (EES); 2012 Academic Professional V9.172.
  25. 25. Kumar S., Kwon H., Choi K., Hyun Cho J., Lim W., Moon I. (2011): Current status and future projections of LNG demand and supplies: A global prospective. Energy Policy, 39(7), 4097-104.10.1016/j.enpol.2011.03.067
  26. 26. Linde Group www.linde.com [accessed 02.11.16].
  27. 27. Maxwell D., Zhu Z. (2011): Natural gas prices, LNG transport costs, and the dynamics of LNG imports. Energy Econ., 33(2), 217-26.10.1016/j.eneco.2010.06.012
  28. 28. ME-GI Dual Fuel MAN B&W Engines. A Technical, Operational and Cost-effective Solution for Ships Fuelled by Gas. http://goo.gl/caO0k1 [accessed 19.11.16].
  29. 29. Mitsubishi Heavy Industries, www.mhi-global.com [accessed 23.11.16].
  30. 30. MAN (Marine Engines and Systems), www.marine.man.eu [accessed 23.11.16].
  31. 31. Rusman N. A. A., Dahari M. (2016): A review on the current progress of metal hydrides material for solid-state hydrogen storage applications. International Journal of Hydrogen Energy, 41, 12108-12126.10.1016/j.ijhydene.2016.05.244
  32. 32. Reguera E. (2009): Hydrogen Storage Nanocavities. Rev. Cub. Física, 26, 3-14.
  33. 33. Repsol. www.repsol.com [accessed 19.11.16].
  34. 34. Romero Gómez J., Romero Gómez M., Lopez Bernal J., Baaliña Insua A. (2015): Analysis and efficiency enhancement of a boil-off gas reliquefaction system with cascade cycle on board LNG carriers. Energy Convers. Manage., 94,261-74.10.1016/j.enconman.2015.01.074
  35. 35. Samsung Techwin, www.samsungtechwin.com [accessed 20.11.16]
  36. 36. Sinha R. P., Nik W. M. N. W. (2011): Investigation of propulsion system for large LNG ships. 1st International Conference on Mechanical Engineering Research (ICMER2011)
  37. 37. U.S. Energy Information Administration, Annual Energy Outlook 2014.
  38. 38. Wartsila.www.wartsila.com [accessed 19.11.16].
  39. 39. Yeo D., Ahn B., Kim J., Kim I. (2007): Propulsion alternatives for modern LNG carriers. In: Gas Technology Institute -15th International Conference and Exhibition on Liquefied Natural Gas 2007, LNG 15 GNL 15, 620-35.
  40. 40. Yu Y. H., Kim B. G., Lee D. G. (2013): Cryogenic reliability of the sandwich insulation board for LNG ship. Composite Structures, 95, 547-556, ISSN 0263-8223.10.1016/j.compstruct.2012.07.007
  41. 41. Shin Y. G., Lee Y. P. (2009): Design of a boil-off natural gas reliquefaction control system for LNG carriers. Applied Energy, 86(1), 37-44, ISSN 0306-2619.10.1016/j.apenergy.2008.03.019
  42. 42. Fan Z., Zhao P., Niu M., Maddy J. (2016): The survey of key technologies in hydrogen energy storage. International Journal of Hydrogen Energy, 41, 14535-4552.10.1016/j.ijhydene.2016.05.293
DOI: https://doi.org/10.2478/pomr-2020-0009 | Journal eISSN: 2083-7429 | Journal ISSN: 1233-2585
Language: English
Page range: 83 - 95
Published on: Apr 30, 2020
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2020 Ignacio Arias Fernández, Manuel Romero Gómez, Javier Romero Gómez, Luis M. López-González, published by Gdansk University of Technology
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.