Have a personal or library account? Click to login
Neural Network Ensemble Approach to Pushed Convoys Dispatching Problems Cover

Neural Network Ensemble Approach to Pushed Convoys Dispatching Problems

Open Access
|Apr 2020

References

  1. 1. Alfandari L., Davidovic T., Furini F., Ljubic I., Maras V., Martin S. (2019):<em>Tighter MIP models for Barge Container Ship Routing</em>. Omega, 82,38–54.<dgdoi:pub-id xmlns:dgdoi="http://degruyter.com/resources/doi-from-crossref" pub-id-type="doi"><a href="https://doi.org/10.1016/j.omega.2017.12.002" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1016/j.omega.2017.12.002</a></dgdoi:pub-id>
  2. 2. Botta M. (2001): Resampling vs reweighting in boosting a relational weak learner. <em>In Proceedings of the 7th Congress of the Italian Association for Artificial Intelligence on Advances in Artificial Intelligence</em>,Springer-Verlag,London, UK, p. 70–80.<dgdoi:pub-id xmlns:dgdoi="http://degruyter.com/resources/doi-from-crossref" pub-id-type="doi"><a href="https://doi.org/10.1007/3-540-45411-X_9" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1007/3-540-45411-X_9</a></dgdoi:pub-id>
  3. 3. Burrill L. C. (1943):<em>Developments in Propeller Design and Manufacture for Merchant Ships</em>. Transactions, Institute of Marine Engineers, London, Vol. 55. p. 106–136.<dgdoi:pub-id xmlns:dgdoi="http://degruyter.com/resources/doi-from-crossref" pub-id-type="doi"><a href="https://doi.org/10.1111/j.1559-3584.1944.tb02124.x" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1111/j.1559-3584.1944.tb02124.x</a></dgdoi:pub-id>
  4. 4. Colic V. (2006):<em>Research of navigational, technical, energetic and propulsive characteristics of Danube towboats</em>. Faculty of Transport and Traffic Engineering (in Serbian), University of Belgrade, Belgrade, p 350.
  5. 5. Couser P.R., Mason A. (2004): Artificial Neural Networks for Hull Resistance Prediction. <em>Computer Applications and Information Technology in the Maritime Industries (COMPIT’04)</em>, 9-12 May, Siguenza, Spain.
  6. 6. Drucker H. (1997): Improving regressors using boosting techniques. <em>Proceedings of the Fourteenth International Conference on Machine Learning</em>, 107–115.
  7. 7. Efron B., Tibshirani R. (1993):<em>An Introduction to the Bootstrap</em>. Chapman &amp; Hall, New York, p.456.<dgdoi:pub-id xmlns:dgdoi="http://degruyter.com/resources/doi-from-crossref" pub-id-type="doi"><a href="https://doi.org/10.1007/978-1-4899-4541-9" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1007/978-1-4899-4541-9</a></dgdoi:pub-id>
  8. 8. Kohavi R. (1995): A study of cross-validation and bootstrap for accuracy estimation and model selection. <em>Proceedings of the Fourteenth International Joint Conference on Artificial Intelligence</em>. San Mateo, CA: Morgan Kaufmann. Vol. 2 (12), 1137–1143.
  9. 9. Maras V., Lazic J., Davidovic T., Mladenovic T.N. (2013):<em>Routing of barge container ships by mixed-integer programming</em>. Appl. Soft Comput., 13, 3515–3528.<dgdoi:pub-id xmlns:dgdoi="http://degruyter.com/resources/doi-from-crossref" pub-id-type="doi"><a href="https://doi.org/10.1016/j.asoc.2013.03.003" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1016/j.asoc.2013.03.003</a></dgdoi:pub-id>
  10. 10. Parks A.I., Sobey A.J., Hudson D.A. (2018):<em>Physics-based shaft power prediction for large merchant ships using neural networks</em>. Ocean Engineering, 166, 92–104.<dgdoi:pub-id xmlns:dgdoi="http://degruyter.com/resources/doi-from-crossref" pub-id-type="doi"><a href="https://doi.org/10.1016/j.oceaneng.2018.07.060" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1016/j.oceaneng.2018.07.060</a></dgdoi:pub-id>
  11. 11. Radonjic A., Vukadinovic K.(2015):<em>Application of Ensemble Neural Networks to Prediction of Towboat Shaft Power</em>.J. Mar. Sci. Technol., 20, 64–80.<dgdoi:pub-id xmlns:dgdoi="http://degruyter.com/resources/doi-from-crossref" pub-id-type="doi"><a href="https://doi.org/10.1007/s00773-014-0273-2" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1007/s00773-014-0273-2</a></dgdoi:pub-id>
  12. 12. Reich Y., Berai S.V. (2000):<em>A methodology for building neural networks model from empirical engineering data.</em>Engineering Applications of Artificial Intelligence, 13(6), 685–694.<dgdoi:pub-id xmlns:dgdoi="http://degruyter.com/resources/doi-from-crossref" pub-id-type="doi"><a href="https://doi.org/10.1016/S0952-1976(00)00053-1" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1016/S0952-1976(00)00053-1</a></dgdoi:pub-id>
  13. 13. Ren L., Zhao Z. (2002):<em>An optimal neural network and concrete strength modeling</em>. Advances in Engineering Software, 33(3), 117–130.<dgdoi:pub-id xmlns:dgdoi="http://degruyter.com/resources/doi-from-crossref" pub-id-type="doi"><a href="https://doi.org/10.1016/S0965-9978(02)00005-4" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1016/S0965-9978(02)00005-4</a></dgdoi:pub-id>
  14. 14. Riedmiller M., Braun H. (1993): A direct adaptive method for faster backpropagation learning: The RPROP algorithm. <em>Proceedings of the IEEE International Conference on Neural Networks</em>, San Francisco, CA, USA, 28 March-1 April 1993, pp. 586–591.<dgdoi:pub-id xmlns:dgdoi="http://degruyter.com/resources/doi-from-crossref" pub-id-type="doi"><a href="https://doi.org/10.1109/ICNN.1993.298623" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1109/ICNN.1993.298623</a></dgdoi:pub-id>
  15. 15. Schwenk H., Bengio Y. (2000):<em>Boosting Neural Networks</em>. Neural Computation, 12(8), 1869-188<em>7.</em><dgdoi:pub-id xmlns:dgdoi="http://degruyter.com/resources/doi-from-crossref" pub-id-type="doi"><a href="https://doi.org/10.1162/089976600300015178" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1162/089976600300015178</a></dgdoi:pub-id>
  16. <em>16. Seiffer C., Khoshgoftaar T.M., Van Hulse J., Napolitano A. (2008</em>): Resampling or Reweighting: A Comparison of Boosting Implementations. <em>20th IEEE International Conference on Tools with Artificial Intelligence</em>, p. 445–451.<dgdoi:pub-id xmlns:dgdoi="http://degruyter.com/resources/doi-from-crossref" pub-id-type="doi"><a href="https://doi.org/10.1109/ICTAI.2008.59" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1109/ICTAI.2008.59</a></dgdoi:pub-id>
  17. 17. Solomatine D.P., Shrestha D.L. (2004): AdaBoost.RT: a boosting algorithm for regression problems. <em>Proceedings of International Joint Conference on Neural Network</em>, Vol. 2, 1163–1168.<dgdoi:pub-id xmlns:dgdoi="http://degruyter.com/resources/doi-from-crossref" pub-id-type="doi"><a href="https://doi.org/10.1109/IJCNN.2004.1380102" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1109/IJCNN.2004.1380102</a></dgdoi:pub-id>
  18. 18. Tupper E.C., Rawson K.J. (2001):<em>Basic Ship Theory</em>. 5<sup>th</sup> Edition, Elsevier, p.784.
  19. 19. Vaganov G.I., Voronin V.F., Shanchurova V.K. (1986):<em>Tyaga Sudov: myehtodeka i premyehreh vihpolnyehneya sudovih tyagovih raschyehtov (Ship propulsion: methodology and examples of the ship propulsion calculations)</em>.Transport, Moscow, p. 201 (In Russian).
  20. 20. Vukadinovic K., Teodorovic D., Pavkovic G. (1997):<em>A neural network approach to the vessel dispatching problem</em>. Eur. J. Oper. Res., 102, 473–487.<dgdoi:pub-id xmlns:dgdoi="http://degruyter.com/resources/doi-from-crossref" pub-id-type="doi"><a href="https://doi.org/10.1016/S0377-2217(96)00237-8" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1016/S0377-2217(96)00237-8</a></dgdoi:pub-id>
  21. 21. Xu Y., Goodacre R. (2018):<em>On Splitting Training and Validation Set: A Comparative Study of Cross –Validation, Bootstrap and Systematic Sampling for Estimating the Generalization Performance of Supervised Learning</em>. Journal of Analysis and Testing, 2, 249 262.<dgdoi:pub-id xmlns:dgdoi="http://degruyter.com/resources/doi-from-crossref" pub-id-type="doi"><a href="https://doi.org/10.1007/s41664-018-0068-2" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1007/s41664-018-0068-2</a></dgdoi:pub-id>
  22. 22. Young Y. L. (2002):<em>Numerical Modeling of Supercavitating and Surface-Piercing Propellers</em>. PhD thesis, Environmental and Water Resources Engineering,Department of Civil Engineering, University of Texas at Austin, Austin, USA.
  23. 23. Zhang G., Eddy Patuwo B., Hu M. Y. (1998):<em>Forecasting with artificial neural networks: The state of the art</em>.International Journal of Forecasting, 14, 35–62.<dgdoi:pub-id xmlns:dgdoi="http://degruyter.com/resources/doi-from-crossref" pub-id-type="doi"><a href="https://doi.org/10.1016/S0169-2070(97)00044-7" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1016/S0169-2070(97)00044-7</a></dgdoi:pub-id>
DOI: https://doi.org/10.2478/pomr-2020-0008 | Journal eISSN: 2083-7429 | Journal ISSN: 1233-2585
Language: English
Page range: 70 - 82
Published on: Apr 30, 2020
Published by: Gdansk University of Technology
In partnership with: Paradigm Publishing Services
Publication frequency: 4 times per year

© 2020 Aleksandar Radonjić, Danijela Pjevčević, Vladislav Maraš, published by Gdansk University of Technology
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.