2. Botta M. (2001): Resampling vs reweighting in boosting a relational weak learner. <em>In Proceedings of the 7th Congress of the Italian Association for Artificial Intelligence on Advances in Artificial Intelligence</em>,Springer-Verlag,London, UK, p. 70–80.<dgdoi:pub-id xmlns:dgdoi="http://degruyter.com/resources/doi-from-crossref" pub-id-type="doi"><a href="https://doi.org/10.1007/3-540-45411-X_9" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1007/3-540-45411-X_9</a></dgdoi:pub-id>
3. Burrill L. C. (1943):<em>Developments in Propeller Design and Manufacture for Merchant Ships</em>. Transactions, Institute of Marine Engineers, London, Vol. 55. p. 106–136.<dgdoi:pub-id xmlns:dgdoi="http://degruyter.com/resources/doi-from-crossref" pub-id-type="doi"><a href="https://doi.org/10.1111/j.1559-3584.1944.tb02124.x" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1111/j.1559-3584.1944.tb02124.x</a></dgdoi:pub-id>
4. Colic V. (2006):<em>Research of navigational, technical, energetic and propulsive characteristics of Danube towboats</em>. Faculty of Transport and Traffic Engineering (in Serbian), University of Belgrade, Belgrade, p 350.
5. Couser P.R., Mason A. (2004): Artificial Neural Networks for Hull Resistance Prediction. <em>Computer Applications and Information Technology in the Maritime Industries (COMPIT’04)</em>, 9-12 May, Siguenza, Spain.
6. Drucker H. (1997): Improving regressors using boosting techniques. <em>Proceedings of the Fourteenth International Conference on Machine Learning</em>, 107–115.
7. Efron B., Tibshirani R. (1993):<em>An Introduction to the Bootstrap</em>. Chapman & Hall, New York, p.456.<dgdoi:pub-id xmlns:dgdoi="http://degruyter.com/resources/doi-from-crossref" pub-id-type="doi"><a href="https://doi.org/10.1007/978-1-4899-4541-9" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1007/978-1-4899-4541-9</a></dgdoi:pub-id>
8. Kohavi R. (1995): A study of cross-validation and bootstrap for accuracy estimation and model selection. <em>Proceedings of the Fourteenth International Joint Conference on Artificial Intelligence</em>. San Mateo, CA: Morgan Kaufmann. Vol. 2 (12), 1137–1143.
14. Riedmiller M., Braun H. (1993): A direct adaptive method for faster backpropagation learning: The RPROP algorithm. <em>Proceedings of the IEEE International Conference on Neural Networks</em>, San Francisco, CA, USA, 28 March-1 April 1993, pp. 586–591.<dgdoi:pub-id xmlns:dgdoi="http://degruyter.com/resources/doi-from-crossref" pub-id-type="doi"><a href="https://doi.org/10.1109/ICNN.1993.298623" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1109/ICNN.1993.298623</a></dgdoi:pub-id>
<em>16. Seiffer C., Khoshgoftaar T.M., Van Hulse J., Napolitano A. (2008</em>): Resampling or Reweighting: A Comparison of Boosting Implementations. <em>20th IEEE International Conference on Tools with Artificial Intelligence</em>, p. 445–451.<dgdoi:pub-id xmlns:dgdoi="http://degruyter.com/resources/doi-from-crossref" pub-id-type="doi"><a href="https://doi.org/10.1109/ICTAI.2008.59" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1109/ICTAI.2008.59</a></dgdoi:pub-id>
20. Vukadinovic K., Teodorovic D., Pavkovic G. (1997):<em>A neural network approach to the vessel dispatching problem</em>. Eur. J. Oper. Res., 102, 473–487.<dgdoi:pub-id xmlns:dgdoi="http://degruyter.com/resources/doi-from-crossref" pub-id-type="doi"><a href="https://doi.org/10.1016/S0377-2217(96)00237-8" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1016/S0377-2217(96)00237-8</a></dgdoi:pub-id>
21. Xu Y., Goodacre R. (2018):<em>On Splitting Training and Validation Set: A Comparative Study of Cross –Validation, Bootstrap and Systematic Sampling for Estimating the Generalization Performance of Supervised Learning</em>. Journal of Analysis and Testing, 2, 249 262.<dgdoi:pub-id xmlns:dgdoi="http://degruyter.com/resources/doi-from-crossref" pub-id-type="doi"><a href="https://doi.org/10.1007/s41664-018-0068-2" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1007/s41664-018-0068-2</a></dgdoi:pub-id>
22. Young Y. L. (2002):<em>Numerical Modeling of Supercavitating and Surface-Piercing Propellers</em>. PhD thesis, Environmental and Water Resources Engineering,Department of Civil Engineering, University of Texas at Austin, Austin, USA.
23. Zhang G., Eddy Patuwo B., Hu M. Y. (1998):<em>Forecasting with artificial neural networks: The state of the art</em>.International Journal of Forecasting, 14, 35–62.<dgdoi:pub-id xmlns:dgdoi="http://degruyter.com/resources/doi-from-crossref" pub-id-type="doi"><a href="https://doi.org/10.1016/S0169-2070(97)00044-7" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1016/S0169-2070(97)00044-7</a></dgdoi:pub-id>