Have a personal or library account? Click to login
Neural Network Ensemble Approach to Pushed Convoys Dispatching Problems Cover

Neural Network Ensemble Approach to Pushed Convoys Dispatching Problems

Open Access
|Apr 2020

References

  1. 1. Alfandari L., Davidovic T., Furini F., Ljubic I., Maras V., Martin S. (2019):Tighter MIP models for Barge Container Ship Routing. Omega, 82,38–54.10.1016/j.omega.2017.12.002
  2. 2. Botta M. (2001): Resampling vs reweighting in boosting a relational weak learner. In Proceedings of the 7th Congress of the Italian Association for Artificial Intelligence on Advances in Artificial Intelligence,Springer-Verlag,London, UK, p. 70–80.10.1007/3-540-45411-X_9
  3. 3. Burrill L. C. (1943):Developments in Propeller Design and Manufacture for Merchant Ships. Transactions, Institute of Marine Engineers, London, Vol. 55. p. 106–136.10.1111/j.1559-3584.1944.tb02124.x
  4. 4. Colic V. (2006):Research of navigational, technical, energetic and propulsive characteristics of Danube towboats. Faculty of Transport and Traffic Engineering (in Serbian), University of Belgrade, Belgrade, p 350.
  5. 5. Couser P.R., Mason A. (2004): Artificial Neural Networks for Hull Resistance Prediction. Computer Applications and Information Technology in the Maritime Industries (COMPIT’04), 9-12 May, Siguenza, Spain.
  6. 6. Drucker H. (1997): Improving regressors using boosting techniques. Proceedings of the Fourteenth International Conference on Machine Learning, 107–115.
  7. 7. Efron B., Tibshirani R. (1993):An Introduction to the Bootstrap. Chapman & Hall, New York, p.456.10.1007/978-1-4899-4541-9
  8. 8. Kohavi R. (1995): A study of cross-validation and bootstrap for accuracy estimation and model selection. Proceedings of the Fourteenth International Joint Conference on Artificial Intelligence. San Mateo, CA: Morgan Kaufmann. Vol. 2 (12), 1137–1143.
  9. 9. Maras V., Lazic J., Davidovic T., Mladenovic T.N. (2013):Routing of barge container ships by mixed-integer programming. Appl. Soft Comput., 13, 3515–3528.10.1016/j.asoc.2013.03.003
  10. 10. Parks A.I., Sobey A.J., Hudson D.A. (2018):Physics-based shaft power prediction for large merchant ships using neural networks. Ocean Engineering, 166, 92–104.10.1016/j.oceaneng.2018.07.060
  11. 11. Radonjic A., Vukadinovic K.(2015):Application of Ensemble Neural Networks to Prediction of Towboat Shaft Power.J. Mar. Sci. Technol., 20, 64–80.10.1007/s00773-014-0273-2
  12. 12. Reich Y., Berai S.V. (2000):A methodology for building neural networks model from empirical engineering data.Engineering Applications of Artificial Intelligence, 13(6), 685–694.10.1016/S0952-1976(00)00053-1
  13. 13. Ren L., Zhao Z. (2002):An optimal neural network and concrete strength modeling. Advances in Engineering Software, 33(3), 117–130.10.1016/S0965-9978(02)00005-4
  14. 14. Riedmiller M., Braun H. (1993): A direct adaptive method for faster backpropagation learning: The RPROP algorithm. Proceedings of the IEEE International Conference on Neural Networks, San Francisco, CA, USA, 28 March-1 April 1993, pp. 586–591.10.1109/ICNN.1993.298623
  15. 15. Schwenk H., Bengio Y. (2000):Boosting Neural Networks. Neural Computation, 12(8), 1869-1887.10.1162/089976600300015178
  16. 16. Seiffer C., Khoshgoftaar T.M., Van Hulse J., Napolitano A. (2008): Resampling or Reweighting: A Comparison of Boosting Implementations. 20th IEEE International Conference on Tools with Artificial Intelligence, p. 445–451.10.1109/ICTAI.2008.59
  17. 17. Solomatine D.P., Shrestha D.L. (2004): AdaBoost.RT: a boosting algorithm for regression problems. Proceedings of International Joint Conference on Neural Network, Vol. 2, 1163–1168.10.1109/IJCNN.2004.1380102
  18. 18. Tupper E.C., Rawson K.J. (2001):Basic Ship Theory. 5th Edition, Elsevier, p.784.
  19. 19. Vaganov G.I., Voronin V.F., Shanchurova V.K. (1986):Tyaga Sudov: myehtodeka i premyehreh vihpolnyehneya sudovih tyagovih raschyehtov (Ship propulsion: methodology and examples of the ship propulsion calculations).Transport, Moscow, p. 201 (In Russian).
  20. 20. Vukadinovic K., Teodorovic D., Pavkovic G. (1997):A neural network approach to the vessel dispatching problem. Eur. J. Oper. Res., 102, 473–487.10.1016/S0377-2217(96)00237-8
  21. 21. Xu Y., Goodacre R. (2018):On Splitting Training and Validation Set: A Comparative Study of Cross –Validation, Bootstrap and Systematic Sampling for Estimating the Generalization Performance of Supervised Learning. Journal of Analysis and Testing, 2, 249 262.10.1007/s41664-018-0068-2
  22. 22. Young Y. L. (2002):Numerical Modeling of Supercavitating and Surface-Piercing Propellers. PhD thesis, Environmental and Water Resources Engineering,Department of Civil Engineering, University of Texas at Austin, Austin, USA.
  23. 23. Zhang G., Eddy Patuwo B., Hu M. Y. (1998):Forecasting with artificial neural networks: The state of the art.International Journal of Forecasting, 14, 35–62.10.1016/S0169-2070(97)00044-7
DOI: https://doi.org/10.2478/pomr-2020-0008 | Journal eISSN: 2083-7429 | Journal ISSN: 1233-2585
Language: English
Page range: 70 - 82
Published on: Apr 30, 2020
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2020 Aleksandar Radonjić, Danijela Pjevčević, Vladislav Maraš, published by Gdansk University of Technology
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.