2. Blandeau F., Francois M., et al. (1999): Linear and nonlinear wave loads on FPSOs. Proceedings of the ASME 9th International Conference on Offshore Mechanics and Arctic Engineering, France.
3. Clement A. H. (1998): An ordinary differential equation for the Green function of time-domain free-surface hydrodynamics. Journal of Engineering Mathematics, 33(2), 201-217.<a href="https://doi.org/10.1023/A:1004376504969" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1023/A:1004376504969</a>
4. Datta R., Rodrigues J. M., Soares C. G. (2011): Study of the motions of fishing vessels by a time domain panel method. Ocean Engineering, 38(5), 782-792.<a href="https://doi.org/10.1016/j.oceaneng.2011.02.002" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1016/j.oceaneng.2011.02.002</a>
5. Hess J. L., Smith A. M. O. (1964): Calculation of non-lifting potential flow about arbitrary three-dimensional bodies. Journal of Ship Research, 8, 22-44.<a href="https://doi.org/10.5957/jsr.1964.8.4.22" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.5957/jsr.1964.8.4.22</a>
8. Kim K. H., Kim Y. (2010): Comparative Study on Ship Hydrodynamics Based on Neumann-Kelvin and Double-Body Linearizations in Time-Domain Analysis. International Journal of Offshore & Polar Engineering, 10, 265-274.
10. Li Z. F., Ren H. L., Tong X. W., et al. (2015): A precise computation method of transient free surface Green function. Ocean Engineering, 105, 318-326.<a href="https://doi.org/10.1016/j.oceaneng.2015.06.048" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1016/j.oceaneng.2015.06.048</a>
11. Liu X. M., Zhou G., Zhu S., et al. (2014): A modified highly precise direct integration method for a class of linear time-varying systems. China Phys. Mech. Astron., 57, 1382-1389.
13. Rodrigues J. M., Guedes Soares C. (2017): Froude-Krylov forces from exact pressure integrations on adaptive panel meshes in a time domain partially nonlinear model for ship motions. Ocean Engineering, 139, 169-183.<a href="https://doi.org/10.1016/j.oceaneng.2017.04.041" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1016/j.oceaneng.2017.04.041</a>
14. Sengupta D., Datta R., Sen D. (2016): A simplified approach for computation of nonlinear ship loads and motions using a 3D time-domain panel method. Ocean Engineering, 117, 99-113.<a href="https://doi.org/10.1016/j.oceaneng.2016.03.039" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1016/j.oceaneng.2016.03.039</a>
15. Shen L., Zhu R. C., Miao G. P., et al. (2007):. A practical numerical method for deep water time-domain Green function. Journal of Hydrodynamics, 22(3), 380-386.
16. Singh S. P., Sen D. (2007): A comparative study on 3D wave load and pressure computations for different level of modelling of nonlinearities. Marine Structures, 20(1-2), 1-24.<a href="https://doi.org/10.1016/j.marstruc.2007.04.004" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1016/j.marstruc.2007.04.004</a>
17. Wehausen J. V. (1971): The motion of floating bodies. Annual Review of Fluid Mechanics, 3, 237-268.<a href="https://doi.org/10.1146/annurev.fl.03.010171.001321" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1146/annurev.fl.03.010171.001321</a>