Have a personal or library account? Click to login
Prediction of Ship Motions Via a Three-Dimensional Time-Domain Method Following a Quad-Tree Adaptive Mesh Technique Cover

Prediction of Ship Motions Via a Three-Dimensional Time-Domain Method Following a Quad-Tree Adaptive Mesh Technique

By:
Open Access
|Apr 2020

References

  1. 1. Beck R. F., Liapis S. J. (1983): Transient motions of floating bodies at zero forward speed. Journal of Ship Research, 3(31), 164-175.
  2. 2. Blandeau F., Francois M., et al. (1999): Linear and nonlinear wave loads on FPSOs. Proceedings of the ASME 9th International Conference on Offshore Mechanics and Arctic Engineering, France.
  3. 3. Clement A. H. (1998): An ordinary differential equation for the Green function of time-domain free-surface hydrodynamics. Journal of Engineering Mathematics, 33(2), 201-217.<a href="https://doi.org/10.1023/A:1004376504969" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1023/A:1004376504969</a>
  4. 4. Datta R., Rodrigues J. M., Soares C. G. (2011): Study of the motions of fishing vessels by a time domain panel method. Ocean Engineering, 38(5), 782-792.<a href="https://doi.org/10.1016/j.oceaneng.2011.02.002" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1016/j.oceaneng.2011.02.002</a>
  5. 5. Hess J. L., Smith A. M. O. (1964): Calculation of non-lifting potential flow about arbitrary three-dimensional bodies. Journal of Ship Research, 8, 22-44.<a href="https://doi.org/10.5957/jsr.1964.8.4.22" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.5957/jsr.1964.8.4.22</a>
  6. 6. Huang D. B. (1992): Approximation of time-domain free surface function and its spatial derivatives. Journal of Shipbuilding of China, 4, 16-25.
  7. 7. Journée J. M. J. (1992): Experiments and calculations on four Wigley Hull form. Report 0909, Delft University of Technology.
  8. 8. Kim K. H., Kim Y. (2010): Comparative Study on Ship Hydrodynamics Based on Neumann-Kelvin and Double-Body Linearizations in Time-Domain Analysis. International Journal of Offshore & Polar Engineering, 10, 265-274.
  9. 9. King B. W. (1987): Time domain analysis of wave exciting forces on ships and bodies. Report No. 306, University of Michigan.
  10. 10. Li Z. F., Ren H. L., Tong X. W., et al. (2015): A precise computation method of transient free surface Green function. Ocean Engineering, 105, 318-326.<a href="https://doi.org/10.1016/j.oceaneng.2015.06.048" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1016/j.oceaneng.2015.06.048</a>
  11. 11. Liu X. M., Zhou G., Zhu S., et al. (2014): A modified highly precise direct integration method for a class of linear time-varying systems. China Phys. Mech. Astron., 57, 1382-1389.
  12. 12. Magee A. R., Beck R. F. (1988): Compendium of ship motion calculations using linear time-domain analysis. Report No. 310, University of Michigan.
  13. 13. Rodrigues J. M., Guedes Soares C. (2017): Froude-Krylov forces from exact pressure integrations on adaptive panel meshes in a time domain partially nonlinear model for ship motions. Ocean Engineering, 139, 169-183.<a href="https://doi.org/10.1016/j.oceaneng.2017.04.041" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1016/j.oceaneng.2017.04.041</a>
  14. 14. Sengupta D., Datta R., Sen D. (2016): A simplified approach for computation of nonlinear ship loads and motions using a 3D time-domain panel method. Ocean Engineering, 117, 99-113.<a href="https://doi.org/10.1016/j.oceaneng.2016.03.039" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1016/j.oceaneng.2016.03.039</a>
  15. 15. Shen L., Zhu R. C., Miao G. P., et al. (2007):. A practical numerical method for deep water time-domain Green function. Journal of Hydrodynamics, 22(3), 380-386.
  16. 16. Singh S. P., Sen D. (2007): A comparative study on 3D wave load and pressure computations for different level of modelling of nonlinearities. Marine Structures, 20(1-2), 1-24.<a href="https://doi.org/10.1016/j.marstruc.2007.04.004" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1016/j.marstruc.2007.04.004</a>
  17. 17. Wehausen J. V. (1971): The motion of floating bodies. Annual Review of Fluid Mechanics, 3, 237-268.<a href="https://doi.org/10.1146/annurev.fl.03.010171.001321" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1146/annurev.fl.03.010171.001321</a>
DOI: https://doi.org/10.2478/pomr-2020-0003 | Journal eISSN: 2083-7429 | Journal ISSN: 1233-2585
Language: English
Page range: 29 - 38
Published on: Apr 30, 2020
Published by: Gdansk University of Technology
In partnership with: Paradigm Publishing Services
Publication frequency: 4 times per year

© 2020 Teng Zhang, Junsheng Ren, Lu Liu, published by Gdansk University of Technology
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.