Have a personal or library account? Click to login
Research on Ship Hull Optimisation of High-Speed Ship Based on Viscous Flow/Potential Flow Theory Cover

Research on Ship Hull Optimisation of High-Speed Ship Based on Viscous Flow/Potential Flow Theory

By:
Open Access
|Apr 2020

References

  1. 1. Kim H. J., Choi J. E., Chun H. H. (2016): <em>Hull-form optimization using parametric modification functions and particle swarm optimization</em>. Journal of Marine Science and Technology, 21, 129–144.<dgdoi:pub-id xmlns:dgdoi="http://degruyter.com/resources/doi-from-crossref" pub-id-type="doi"><a href="https://doi.org/10.1007/s00773-015-0337-y" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1007/s00773-015-0337-y</a></dgdoi:pub-id>
  2. 2. Li G. L., Long L. H., Tan Z. S. (1990): <em>Energy-saving ship design</em>. National Defense Industry press, Beijing, China.
  3. 3. Liu X. Y., Wu J. W., Wan D. C. (2016): <em>Ship type optimization based on genetic algorithm and NM theory.</em> Hydrodynamic Research and Development, 31(5), 535–541.
  4. 4. Li Z. Z. (2005): <em>Research on ship type optimization based on wave resistance value calculation</em>. Dalian University of Technology, China.
  5. 5. Luo W. L., Lan L. Q. (2017): <em>Design Optimization of the Lines of the Bulbous Bow of a Hull Based on Parametric Modeling and Computational Fluid Dynamics Calculation</em>. Math Computation. Appl., 22(1), 43–54.<dgdoi:pub-id xmlns:dgdoi="http://degruyter.com/resources/doi-from-crossref" pub-id-type="doi"><a href="https://doi.org/10.3390/mca22010004" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.3390/mca22010004</a></dgdoi:pub-id>
  6. 6. Masut S., Suzuki K. (2001): <em>Experimental Verification of Optimized Hull Form Based on Rankine Source Method</em>. J. Kansai Soc. N. A., Japan, 236, 27–32.
  7. 7. Ma K., Ichiro T. (1994): <em>A study of minimum resistance hull form with consideration of separation (1st Report)</em>. J. Kansai Soc. N. A., Japan, 221, 9–15.
  8. 8. Ma K., Zhang M. X., Ji Z. S. (2003): <em>Ship floating calculation based on nonlinear programming.</em> Journal of Dalian University of Technology, 43(3), 329–331.
  9. 9. Huang F. X., Wang L. J., Yang C. (2015): <em>Hull Form Optimization for Reduced Drag and Improved Seakeeping Using a Surrogate-Based Method.</em> 25<sup>th</sup> International Ocean and Polar Engineering Conference, Kona, Big Island, Hawaii, USA.<dgdoi:pub-id xmlns:dgdoi="http://degruyter.com/resources/doi-from-crossref" pub-id-type="doi"><a href="https://doi.org/10.5957/FAST-2015-038" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.5957/FAST-2015-038</a></dgdoi:pub-id>
  10. 10. Hirt C. W., Nichols B. D. (1981): <em>Volume of fluid (VOF) method for the dynamics of free boundaries.</em> Journal of Computational Physics, 39(1), 201–225.<dgdoi:pub-id xmlns:dgdoi="http://degruyter.com/resources/doi-from-crossref" pub-id-type="doi"><a href="https://doi.org/10.1016/0021-9991(81)90145-5" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1016/0021-9991(81)90145-5</a></dgdoi:pub-id>
  11. 11. Hsiung C. C. (1981): <em>Optimal Ship Forms for Minimum Wave Resistance.</em> Journal of Ship Research, 25(2), 95–116.<dgdoi:pub-id xmlns:dgdoi="http://degruyter.com/resources/doi-from-crossref" pub-id-type="doi"><a href="https://doi.org/10.5957/jsr.1981.25.2.95" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.5957/jsr.1981.25.2.95</a></dgdoi:pub-id>
  12. 12. Hsiung C. C. (1984): <em>Optimal Ship Forms for Minimum Total Resistance</em>. Journal of Ship Research, 28(3), 163–172.<dgdoi:pub-id xmlns:dgdoi="http://degruyter.com/resources/doi-from-crossref" pub-id-type="doi"><a href="https://doi.org/10.5957/jsr.1984.28.3.163" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.5957/jsr.1984.28.3.163</a></dgdoi:pub-id>
  13. 13. Wang S., Chen J. P., Wei J. F. (2013): <em>The development and application research of an integrated optimization system based on the resistance in calm water and added resistance due to waves.</em> 25<sup>th</sup> National Hydrodynamics Seminar and 12<sup>th</sup> National Hydrodynamics Academic Conference, Zhejiang, Zhoushan, 928–933.
  14. 14. Wu J. W., Liu X. Y. and Wan D. C. (2016): <em>Multi-Objective Hydrodynamic Optimization of Ship Hull Based on Approximation Model</em>. Proceedings of 26<sup>th</sup> (2016) International Ocean and Polar Engineering Conference Rhodes, Greece.
  15. 15. Ye H. K. (1985): <em>The wave resistance calculation and optimization of ship form with the tent function.</em> Shipbuilding of China, 1985, 28–39.
  16. 16. Zhang W. X. (2012): <em>Comprehensive optimization of hull form for containership in wave based on EEDI</em>. Wuhan University of Technology, China, Wuhan.
  17. 17. Zhang S. L., Zhang B. J., Tezdogan T. et al. (2017): <em>Computational fluid dynamics based hull form optimization using approximation method.</em> Engineering Applications of Computational Fluid Mechanics, 12(3), 1–8.<dgdoi:pub-id xmlns:dgdoi="http://degruyter.com/resources/doi-from-crossref" pub-id-type="doi"><a href="https://doi.org/10.1080/19942060.2017.1343751" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1080/19942060.2017.1343751</a></dgdoi:pub-id>
  18. 18. Zhang S. L., Zhang B. J., Tezdogan T. et al. (2017): <em>Research on bulbous bow optimization based on the improved PSO algorithm.</em> China Ocean Engineering, 33(4), 487–494.<dgdoi:pub-id xmlns:dgdoi="http://degruyter.com/resources/doi-from-crossref" pub-id-type="doi"><a href="https://doi.org/10.1007/s13344-017-0055-9" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1007/s13344-017-0055-9</a></dgdoi:pub-id>
  19. 19. Zhang S. L., Tezdogan T., Zhang B. J. et al. (2017): <em>Hull form optimization in waves based on CFD technique.</em> Ships &amp; Offshore Structures, 12(2), 1–16.<dgdoi:pub-id xmlns:dgdoi="http://degruyter.com/resources/doi-from-crossref" pub-id-type="doi"><a href="https://doi.org/10.1080/17445302.2017.1347231" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1080/17445302.2017.1347231</a></dgdoi:pub-id>
  20. 20. Zhang B. J., Zhang S. L. (2018): <em>Research on ship design and optimization based on simulation-based design (SBD) Technique</em>. Shanghai Jiaotong University Press and Springer.<dgdoi:pub-id xmlns:dgdoi="http://degruyter.com/resources/doi-from-crossref" pub-id-type="doi"><a href="https://doi.org/10.1007/978-981-10-8423-2" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1007/978-981-10-8423-2</a></dgdoi:pub-id>
  21. 21. Zou Y. (2012): <em>Research on optimization method for high performance vessel Research on optimization method for high performance vessel</em>. Dalian Maritime University, China, Dalian.
DOI: https://doi.org/10.2478/pomr-2020-0002 | Journal eISSN: 2083-7429 | Journal ISSN: 1233-2585
Language: English
Page range: 18 - 28
Published on: Apr 30, 2020
Published by: Gdansk University of Technology
In partnership with: Paradigm Publishing Services
Publication frequency: 4 times per year

© 2020 Zhang Baoji, published by Gdansk University of Technology
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.