Have a personal or library account? Click to login
Propeller Hydrodynamic Characteristics in Oblique Flow by Unsteady Ranse Solver Cover

Propeller Hydrodynamic Characteristics in Oblique Flow by Unsteady Ranse Solver

Open Access
|Apr 2020

References

  1. 1. Abbasi A., Ghassemi H., Fadavie M. (2018): <em>Hydrodynamic Characteristic of the Marine Propeller in the Oblique Flow with Various Current Angle by CFD Solver</em>. American Journal of Marine Science, 6(1), 25–29.
  2. 2. Atsavapranee P. (2010): <em>Steady-turning experiments and RANS simulations on a surface combatant hull form (Model# 5617)</em>. 28th Symposium on Naval Hydrodynamics, Pasadena, 2010.
  3. 3. Broglia R., Dubbioso G., Durante D., Di Mascio A. (2013): <em>Simulation of turning circle by CFD: Analysis of different propeller models and their effect on maneuvering prediction</em>. Applied Ocean Research, 39, 1–10.<dgdoi:pub-id xmlns:dgdoi="http://degruyter.com/resources/doi-from-crossref" pub-id-type="doi"><a href="https://doi.org/10.1016/j.apor.2012.09.001" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1016/j.apor.2012.09.001</a></dgdoi:pub-id>
  4. 4. Chase N., Carrica P. M. (2013): <em>Submarine propeller computations and application to self-propulsion of DARPA Suboff</em>. Ocean Engineering, 60, 68–80.<dgdoi:pub-id xmlns:dgdoi="http://degruyter.com/resources/doi-from-crossref" pub-id-type="doi"><a href="https://doi.org/10.1016/j.oceaneng.2012.12.029" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1016/j.oceaneng.2012.12.029</a></dgdoi:pub-id>
  5. 5. Coleman R. P., Feingold A. M., Stempin C. W. (1945): <em>Evaluation of the induced-velocity field of an idealized helicopter rotor.</em> National Aeronautics and Space Administration, Hampton, VA; Langley Research Center.
  6. 6. Coraddu A., Dubbioso G., Mauro S., Viviani M. (2013): <em>Analysis of twin-screw ships’ asymmetric propeller behavior by means of free running model tests</em>. Ocean Engineering, 68, 47–64.<dgdoi:pub-id xmlns:dgdoi="http://degruyter.com/resources/doi-from-crossref" pub-id-type="doi"><a href="https://doi.org/10.1016/j.oceaneng.2013.04.013" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1016/j.oceaneng.2013.04.013</a></dgdoi:pub-id>
  7. 7. Dubbioso G., Durante D., Broglia R., Mauro S. (2012): <em>Comparison of experimental and CFD results for a tanker-like vessel</em>. Proceedings of MARSIM, 2012.
  8. 8. Dubbioso G., Muscari R., Di Mascio A. (2013): <em>Analysis of the performances of a marine propeller operating in oblique flow</em>. Computers &amp; Fluids, 75, 86–102.<dgdoi:pub-id xmlns:dgdoi="http://degruyter.com/resources/doi-from-crossref" pub-id-type="doi"><a href="https://doi.org/10.1016/j.compfluid.2013.01.017" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1016/j.compfluid.2013.01.017</a></dgdoi:pub-id>
  9. 9. Dubbioso G., Muscari R., Di Mascio A. (2014): <em>Analysis of a marine propeller operating in oblique flow. Part 2: very high incidence angles</em>. Computers &amp; Fluids, 92, 56–81.<dgdoi:pub-id xmlns:dgdoi="http://degruyter.com/resources/doi-from-crossref" pub-id-type="doi"><a href="https://doi.org/10.1016/j.compfluid.2013.11.032" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1016/j.compfluid.2013.11.032</a></dgdoi:pub-id>
  10. 10. Dubbioso G., Muscari R., Ortolani F., Di Mascio A. (2017): <em>Analysis of propeller bearing loads by CFD. Part I: straight ahead and steady turning maneuvers</em>. Ocean Engineering, 130, 241–259.<dgdoi:pub-id xmlns:dgdoi="http://degruyter.com/resources/doi-from-crossref" pub-id-type="doi"><a href="https://doi.org/10.1016/j.oceaneng.2016.12.004" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1016/j.oceaneng.2016.12.004</a></dgdoi:pub-id>
  11. 11. Dubbioso G., Muscari R., Di Mascio A., eds. (2013): <em>CFD analysis of propeller performance in oblique flow</em>. 3<sup>rd</sup> International Symposium on Marine Propulsors, SMP, 2013.
  12. 12. Durante D., Broglia R., Muscari R., Di Mascio A. (2010): <em>Numerical simulations of a turning circle maneuver or a fully appended hull</em>. 28<sup>th</sup> Symposium on Naval Hydrodynamics, Pasadena, CA.
  13. 13. Hochbaum A. C. (2006): <em>Virtual PMM tests for maneuvering prediction.</em> 26<sup>th</sup> Symposium on Naval Hydrodynamics, Rome, Italy.
  14. 14. Jessup S. (1998): <em>Experimental Data for RANS Calculations and Comparisons (DTMB P4119).</em> 22<sup>nd</sup> ITTC Propulsion Committee Propeller RANS. Panel Method Workshop, Grenoble.
  15. 15. Koyama K. (1993): <em>Comparative calculations of propellers by surface panel method</em>. Workshop organized by 20<sup>th</sup> ITTC Propulsor Committee. Ship Research Institute, Supplement, 1993 (15).
  16. 16. Krasilnikov V., Zhang Z., Hong F., eds. (2009): <em>Analysis of unsteady propeller blade forces by RANS</em>. 1<sup>st</sup> International Symposium on Marine Propulsors (SMP), Trondheim, Norway, June, 2009.
  17. 17. Menter F. R., Kuntz M., Langtry R. (2003): <em>Ten years of industrial experience with the SST turbulence model</em>. Turbulence, Heat and Mass Transfer, 4(1), 625–32.
  18. 18. Nakisa M., Abbasi M. J., Amini A. M. (2010): <em>Assessment of marine propeller hydrodynamic performance in open water via CFD</em>. Proceedings of 7<sup>th</sup> International Conference on Marine Technology (MARTEC 2010),Dec. 2010.
  19. 19. Ortolani F., Mauro S., Dubbioso G. (2015): <em>Investigation of the radial bearing force developed during actual ship operations. Part 1: Straight ahead sailing and turning maneuvers.</em> Ocean Engineering, 94, 67–87.<dgdoi:pub-id xmlns:dgdoi="http://degruyter.com/resources/doi-from-crossref" pub-id-type="doi"><a href="https://doi.org/10.1016/j.oceaneng.2014.11.032" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1016/j.oceaneng.2014.11.032</a></dgdoi:pub-id>
  20. 20. Ortolani F., Mauro S., Dubbioso G. (2015): <em>Investigation of the radial bearing force developed during actual ship operations. Part 2: Unsteady maneuvers</em>. Ocean Engineering, 106, 424–45.<dgdoi:pub-id xmlns:dgdoi="http://degruyter.com/resources/doi-from-crossref" pub-id-type="doi"><a href="https://doi.org/10.1016/j.oceaneng.2015.06.058" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1016/j.oceaneng.2015.06.058</a></dgdoi:pub-id>
  21. 21. Rhee S. H., Joshi S. (2005): <em>Computational validation for flow around a marine propeller using unstructured mesh based Navier-Stokes solver</em>. JSME International Journal, Series B, Fluids and Thermal Engineering, 48(3), 562–70.<dgdoi:pub-id xmlns:dgdoi="http://degruyter.com/resources/doi-from-crossref" pub-id-type="doi"><a href="https://doi.org/10.1299/jsmeb.48.562" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1299/jsmeb.48.562</a></dgdoi:pub-id>
  22. 22. Ribner H. S. (1945): <em>Propellers in yaw</em>. NACA.
  23. 23. Shamsi R., Ghassemi H. (2017): <em>Determining the Hydrodynamic Loads of the Marine Propeller Forces in Oblique Flow and Off-Design Condition</em>. Iranian Journal of Science and Technology, Transactions of Mechanical Engineering, 41(2), 121–7.<dgdoi:pub-id xmlns:dgdoi="http://degruyter.com/resources/doi-from-crossref" pub-id-type="doi"><a href="https://doi.org/10.1007/s40997-016-0049-x" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1007/s40997-016-0049-x</a></dgdoi:pub-id>
  24. 24. Shamsi R., Ghassemi H. (2013): <em>Numerical investigation of yaw angle effects on propulsive characteristics of podded propulsors</em>. International Journal of Naval Architecture and Ocean Engineering, 5(2), 287–301.<dgdoi:pub-id xmlns:dgdoi="http://degruyter.com/resources/doi-from-crossref" pub-id-type="doi"><a href="https://doi.org/10.2478/IJNAOE-2013-0133" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.2478/IJNAOE-2013-0133</a></dgdoi:pub-id>
  25. 25. Simonsen C. D., Otzen J. F., Klimt C., Larsen N. L., Stern F., eds. (2012): <em>Maneuvering predictions in the early design phase, using CFD generated PMM data</em>. 29<sup>th</sup> Symposium on Naval Hydrodynamics.
  26. 26. Viviani M., Podenzana Bonvino C., Mauro S., Cerruti M., Guadalupi D., Menna A. (2007): <em>Analysis of asymmetrical shaft power increase during tight maneuvers</em>. 9<sup>th</sup> International Conference on Fast Sea Transportation (FAST2007), Shanghai, China, 2007.
  27. 27. Wilcox D. C. (1998): <em>Turbulence modeling for CFD.</em> DCW Industries, La Canada, CA.
  28. 28. Yao J. (2015): <em>Investigation on hydrodynamic performance of a marine propeller in oblique flow by RANS computations</em>. International Journal of Naval Architecture and Ocean Engineering, 7(1), 56–69.<dgdoi:pub-id xmlns:dgdoi="http://degruyter.com/resources/doi-from-crossref" pub-id-type="doi"><a href="https://doi.org/10.1515/ijnaoe-2015-0005" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1515/ijnaoe-2015-0005</a></dgdoi:pub-id>
DOI: https://doi.org/10.2478/pomr-2020-0001 | Journal eISSN: 2083-7429 | Journal ISSN: 1233-2585
Language: English
Page range: 6 - 17
Published on: Apr 30, 2020
Published by: Gdansk University of Technology
In partnership with: Paradigm Publishing Services
Publication frequency: 4 times per year

© 2020 Hossein Nouroozi, Hamid Zeraatgar, published by Gdansk University of Technology
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.