Have a personal or library account? Click to login
Propeller Hydrodynamic Characteristics in Oblique Flow by Unsteady Ranse Solver Cover

Propeller Hydrodynamic Characteristics in Oblique Flow by Unsteady Ranse Solver

Open Access
|Apr 2020

References

  1. 1. Abbasi A., Ghassemi H., Fadavie M. (2018): Hydrodynamic Characteristic of the Marine Propeller in the Oblique Flow with Various Current Angle by CFD Solver. American Journal of Marine Science, 6(1), 25–29.
  2. 2. Atsavapranee P. (2010): Steady-turning experiments and RANS simulations on a surface combatant hull form (Model# 5617). 28th Symposium on Naval Hydrodynamics, Pasadena, 2010.
  3. 3. Broglia R., Dubbioso G., Durante D., Di Mascio A. (2013): Simulation of turning circle by CFD: Analysis of different propeller models and their effect on maneuvering prediction. Applied Ocean Research, 39, 1–10.10.1016/j.apor.2012.09.001
  4. 4. Chase N., Carrica P. M. (2013): Submarine propeller computations and application to self-propulsion of DARPA Suboff. Ocean Engineering, 60, 68–80.10.1016/j.oceaneng.2012.12.029
  5. 5. Coleman R. P., Feingold A. M., Stempin C. W. (1945): Evaluation of the induced-velocity field of an idealized helicopter rotor. National Aeronautics and Space Administration, Hampton, VA; Langley Research Center.
  6. 6. Coraddu A., Dubbioso G., Mauro S., Viviani M. (2013): Analysis of twin-screw ships’ asymmetric propeller behavior by means of free running model tests. Ocean Engineering, 68, 47–64.10.1016/j.oceaneng.2013.04.013
  7. 7. Dubbioso G., Durante D., Broglia R., Mauro S. (2012): Comparison of experimental and CFD results for a tanker-like vessel. Proceedings of MARSIM, 2012.
  8. 8. Dubbioso G., Muscari R., Di Mascio A. (2013): Analysis of the performances of a marine propeller operating in oblique flow. Computers & Fluids, 75, 86–102.10.1016/j.compfluid.2013.01.017
  9. 9. Dubbioso G., Muscari R., Di Mascio A. (2014): Analysis of a marine propeller operating in oblique flow. Part 2: very high incidence angles. Computers & Fluids, 92, 56–81.10.1016/j.compfluid.2013.11.032
  10. 10. Dubbioso G., Muscari R., Ortolani F., Di Mascio A. (2017): Analysis of propeller bearing loads by CFD. Part I: straight ahead and steady turning maneuvers. Ocean Engineering, 130, 241–259.10.1016/j.oceaneng.2016.12.004
  11. 11. Dubbioso G., Muscari R., Di Mascio A., eds. (2013): CFD analysis of propeller performance in oblique flow. 3rd International Symposium on Marine Propulsors, SMP, 2013.
  12. 12. Durante D., Broglia R., Muscari R., Di Mascio A. (2010): Numerical simulations of a turning circle maneuver or a fully appended hull. 28th Symposium on Naval Hydrodynamics, Pasadena, CA.
  13. 13. Hochbaum A. C. (2006): Virtual PMM tests for maneuvering prediction. 26th Symposium on Naval Hydrodynamics, Rome, Italy.
  14. 14. Jessup S. (1998): Experimental Data for RANS Calculations and Comparisons (DTMB P4119). 22nd ITTC Propulsion Committee Propeller RANS. Panel Method Workshop, Grenoble.
  15. 15. Koyama K. (1993): Comparative calculations of propellers by surface panel method. Workshop organized by 20th ITTC Propulsor Committee. Ship Research Institute, Supplement, 1993 (15).
  16. 16. Krasilnikov V., Zhang Z., Hong F., eds. (2009): Analysis of unsteady propeller blade forces by RANS. 1st International Symposium on Marine Propulsors (SMP), Trondheim, Norway, June, 2009.
  17. 17. Menter F. R., Kuntz M., Langtry R. (2003): Ten years of industrial experience with the SST turbulence model. Turbulence, Heat and Mass Transfer, 4(1), 625–32.
  18. 18. Nakisa M., Abbasi M. J., Amini A. M. (2010): Assessment of marine propeller hydrodynamic performance in open water via CFD. Proceedings of 7th International Conference on Marine Technology (MARTEC 2010),Dec. 2010.
  19. 19. Ortolani F., Mauro S., Dubbioso G. (2015): Investigation of the radial bearing force developed during actual ship operations. Part 1: Straight ahead sailing and turning maneuvers. Ocean Engineering, 94, 67–87.10.1016/j.oceaneng.2014.11.032
  20. 20. Ortolani F., Mauro S., Dubbioso G. (2015): Investigation of the radial bearing force developed during actual ship operations. Part 2: Unsteady maneuvers. Ocean Engineering, 106, 424–45.10.1016/j.oceaneng.2015.06.058
  21. 21. Rhee S. H., Joshi S. (2005): Computational validation for flow around a marine propeller using unstructured mesh based Navier-Stokes solver. JSME International Journal, Series B, Fluids and Thermal Engineering, 48(3), 562–70.10.1299/jsmeb.48.562
  22. 22. Ribner H. S. (1945): Propellers in yaw. NACA.
  23. 23. Shamsi R., Ghassemi H. (2017): Determining the Hydrodynamic Loads of the Marine Propeller Forces in Oblique Flow and Off-Design Condition. Iranian Journal of Science and Technology, Transactions of Mechanical Engineering, 41(2), 121–7.10.1007/s40997-016-0049-x
  24. 24. Shamsi R., Ghassemi H. (2013): Numerical investigation of yaw angle effects on propulsive characteristics of podded propulsors. International Journal of Naval Architecture and Ocean Engineering, 5(2), 287–301.10.2478/IJNAOE-2013-0133
  25. 25. Simonsen C. D., Otzen J. F., Klimt C., Larsen N. L., Stern F., eds. (2012): Maneuvering predictions in the early design phase, using CFD generated PMM data. 29th Symposium on Naval Hydrodynamics.
  26. 26. Viviani M., Podenzana Bonvino C., Mauro S., Cerruti M., Guadalupi D., Menna A. (2007): Analysis of asymmetrical shaft power increase during tight maneuvers. 9th International Conference on Fast Sea Transportation (FAST2007), Shanghai, China, 2007.
  27. 27. Wilcox D. C. (1998): Turbulence modeling for CFD. DCW Industries, La Canada, CA.
  28. 28. Yao J. (2015): Investigation on hydrodynamic performance of a marine propeller in oblique flow by RANS computations. International Journal of Naval Architecture and Ocean Engineering, 7(1), 56–69.10.1515/ijnaoe-2015-0005
DOI: https://doi.org/10.2478/pomr-2020-0001 | Journal eISSN: 2083-7429 | Journal ISSN: 1233-2585
Language: English
Page range: 6 - 17
Published on: Apr 30, 2020
Published by: Gdansk University of Technology
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2020 Hossein Nouroozi, Hamid Zeraatgar, published by Gdansk University of Technology
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.