Have a personal or library account? Click to login

Optimizing the Shape of a Compression-Ignition Engine Combustion Chamber by Using Simulation Tests

Open Access
|Oct 2019

References

  1. 1. AVL FIRE, ESE Diesel, Emission Module, Version 2017.
  2. 2. Channappagoudra M., Ramesh K., Manavendra G.: Comparative study of standard engine and modified engine with different piston bowl geometries operated with B20 fuel blend. Renewable Energy, 133, 2019, pp. 216–232.10.1016/j.renene.2018.10.027
  3. 3. Gafoor A.C.P., Gupta R.: Numerical investigation of piston bowl geometry and swirl ratio on emission from diesel engines. Energy Conversion and Management, 101, 2015, pp. 541–551.10.1016/j.enconman.2015.06.007
  4. 4. Heywood J.: Internal Combustion Engine Fundamentals. McGraw-Hill Book Company, New York 1988.
  5. 5. Khan S., Panua R., Bose P.K.: Combined effects of piston bowl geometry and spray pattern on mixing, combustion and emissions of a diesel engine: A numerical approach. Fuel, 225, 2018, pp. 203–217.10.1016/j.fuel.2018.03.139
  6. 6. Maehara N., Shimoda Y.: Application of the genetic algorithm and downhill simplex methods (Nelder–Mead methods) in the search for the optimum chiller configuration. Applied Thermal Engineering, 61(2), 2013, pp. 433–442.10.1016/j.applthermaleng.2013.08.021
  7. 7. Marine engine programme. MAN energy solution. 2nd edition 2018. www.marine.man-es.com
  8. 8. Naber J.D., Reitz R.D. Modeling engine spray/wall impingement. SAE Technical Paper 880107.
  9. 9. Navid A., Khalilarya S., Abbasi M.: Diesel engine optimization with multi-objective performance characteristics by non-evolutionary Nelder-Mead algorithm: Sobol sequence and Latin hypercube sampling methods comparison in DoE process. Fuel, 228, 2018, pp. 349–367.10.1016/j.fuel.2018.04.142
  10. 10. Pielecha I., Pielecha J., Skowron M. et al.: The influence of diesel oil improvers on indices of atomisation and combustion in high-efficiency engines. Polish Maritime Research, 3(95), vol. 24, 2017, pp. 99–105.10.1515/pomr-2017-0094
  11. 11. Pielecha I., Wisłocki K., Cieślik W. et al.: Application of IMEP and MBF50 indexes for controlling combustion in dual-fuel reciprocating engine. Applied Thermal Engineering, 132, 2018, pp. 188–195.10.1016/j.applthermaleng.2017.12.089
  12. 12. Shields M.D., Zhang J.: The generalization of Latin hypercube sampling, Reliability Engineering & System Safety, 148, 2016, pp. 96–108.10.1016/j.ress.2015.12.002
  13. 13. Taghavifar H.: Towards multiobjective Nelder-Mead optimization of a HSDI diesel engine: Application of Latin hypercube design-explorer with SVM modeling approach. Energy Conversion and Management, 143, 2017, pp. 150–161.10.1016/j.enconman.2017.04.008
  14. 14. Vedharaj S., Vallinayagam R., Yang W.M. et al.: Optimization of combustion bowl geometry for the operation of kapok biodiesel – Diesel blends in a stationary diesel engine. Fuel, 139, 2015, 561–567.10.1016/j.fuel.2014.09.020
  15. 15. Wärtsilä Solutions for Marine and Oil & Gas Markets. Wartsila 2018, wartsila.com.
DOI: https://doi.org/10.2478/pomr-2019-0054 | Journal eISSN: 2083-7429 | Journal ISSN: 1233-2585
Language: English
Page range: 138 - 146
Published on: Oct 18, 2019
Published by: Gdansk University of Technology
In partnership with: Paradigm Publishing Services
Publication frequency: 4 times per year

© 2019 Ireneusz Pielecha, Jerzy Merkisz, published by Gdansk University of Technology
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.