Have a personal or library account? Click to login
Pulsation Signals Analysis of Turbocharger Turbine Blades based on Optimal EEMD and TEO Cover

Pulsation Signals Analysis of Turbocharger Turbine Blades based on Optimal EEMD and TEO

By: Fengli Wang  
Open Access
|Oct 2019

References

  1. 1. H. Hackenberg, A. Hartung: An approach for estimating the effect of transient sweep through a resonance, in: Proceedings of ASME Turbo Expo 2015: Turbomachinery Technical Conference and Exposition, 2015, pp. 1-11.10.1115/GT2015-42163
  2. 2. S. Yeung, R. M. Murray: Reduction of bleed valve rate requirements for control of rotating stall using continuous air injection, IEEE International Conference on Control Applications. 1997, pp.683-690.10.1109/CCA.1997.627738
  3. 3. Y. H. Wu, J. Wu, H. Zhang, W. Chu: Experimental and numerical investigation of near-tip flow field in an axial flow compressor rotor-Part II: Flow characteristics at stall inception condition, ASME Turbo Expo 2013: Turbine Technical Conference & Exposition, 2013, pp.67-73.
  4. 4. Z. Peng, F. Chu: Application of the wavelet transform in machine condition monitoring and fault diagnostics: a review with bibliography, Mechanical systems and Signal Processing, 18 (2004), pp. 199-221.10.1016/S0888-3270(03)00075-X
  5. 5. N. E. Huang, Z. Shen, S.R. Long, M.L. Wu, H.H. Shih, Q. Zheng, N.C. Yen, C.C. Tung, H.H. Liu: The empirical mode decomposition and the Hilbert spectrum for nonlinear and nonstationary time series analysis, Proceedings of the Royal Society of London, Series A, 454(1998) pp. 903-995.10.1098/rspa.1998.0193
  6. 6. Z. H. Wu, N. E. Huang: Ensemble empirical mode decomposition: a noise assisted data analysis method, Advances in Adaptive Data Analysis, 1(2009), pp. 1-41.10.1142/S1793536909000047
  7. 7. J. Zhang, R. Q. Yan, R. X. Gao, Z. H. Feng: Performance enhancement of ensemble empirical mode decomposition, Mechanical Systems and Signal Processing, 24(2010), pp. 2104-2123.10.1016/j.ymssp.2010.03.003
  8. 8. L. Chen, G. Tang, Y. Zi, et al.: Application of adaptive ensemble empirical mode decomposition method to electrocardiogram signal processing, Chinese Journal of Data Acquisition & Processing, 26(2011), pp. 361-366.
  9. 9. Chang K. M., Liu S. H.: Gaussian noise filtering from ECG by Wiener filter and ensemble empirical mode decomposition, Journal of Signal Processing, 64(2011), pp. 249-264.10.1007/s11265-009-0447-z
  10. 10. J. R. Yeh, J. S. Shieh, N. E. Huang: Complementary ensemble empirical mode decomposition: a novel noise enhanced data analysis method, Advances in Adaptive Data Analysis, 2(2010), pp. 135-156.10.1142/S1793536910000422
  11. 11. Y. J. Wang, Y. C. Jiang, S. Q. Kang, G. X. Yang, Y. N. Chen: Diagnosis method of fault location and performance degradation degree of rolling bearing based on optimal ensemble EMD (in Chinese)., Chinese Journal of Scientific Instrument, 34(2013), pp. 1834-1840
  12. 12. Y. G. Lei, D. T. Kong, N. P. Li, et al.: Adaptive ensemble empirical mode decomposition and its application to fault detection of planetary gearboxes, Journal of Mechanical Engineering, 50(2014), pp. 64-70.10.3901/JME.2014.03.064
  13. 13. R. K. Niazy, C. F. Beckmann, J. M. Brady, S. M. Smith: Performance evaluation of ensemble empirical mode decomposition, Advances in Adaptive Data Analysis, 1 (2009), pp. 231-242.10.1142/S1793536909000102
  14. 14. D. T. Kong, Q. C. Liu, Y. G. Lei, W. Fan, X. C. Ding, Z. Wang: The improved EEMD method and its application, The Journal of Vibration Engineering, 28(2015), pp. 1015-1021.
  15. 15. J.A. Kenyon, D.C. Rabe, S. Fleeter: Aerodynamic effects on blade vibratory stress variations, Journal of propulsion and power, 15 (1999), pp. 675-680.10.2514/2.5492
  16. 16. D. Hemberger, D. Filsinger, H J Bauer: Identification of mistuning for casted turbine wheels of small size, in: ASME Turbo Expo2014: Turbine Technical Conference and Exposition, 2014, pp. V01BT24A002.10.1115/GT2014-25099
  17. 17. Z. H. Wu, N. E. Huang: A study of the characteristics of white noise using the empirical mode decomposition method, Proceedings of The Royal Society Series A, 460(2004), pp. 1597-1661.10.1098/rspa.2003.1221
  18. 18. Y. Gao, E. Sang, B. Liu: Adaptive de-noising algorithm based on EMD (in Chinese)., Computer Engineering and Applications, 43(2007), pp. 59-61
  19. 19. A. Potamianos, P. Maragos,: A comparison of the energy operator and Hilbert transform approaches for signal and speech demodulation, Signal Processing, 37(1994), pp. 95-120.10.1016/0165-1684(94)90169-4
  20. 20. J. Kaiser: On a simple algorithm to calculate the ‘energy’ of a signal, Proceedings of IEEE International Conference on Acoustics, Speech, and Signal Processing,1(1990), pp. 381-384.
  21. 21. G. McDonald, Q. Zhao, M. Zuo: Maximum correlated kurtosis deconvolution and application on gear tooth chip fault detection, Mechanical Systems and Signal Processing, 33(2012), pp. 237-255.10.1016/j.ymssp.2012.06.010
DOI: https://doi.org/10.2478/pomr-2019-0048 | Journal eISSN: 2083-7429 | Journal ISSN: 1233-2585
Language: English
Page range: 78 - 86
Published on: Oct 18, 2019
Published by: Gdansk University of Technology
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2019 Fengli Wang, published by Gdansk University of Technology
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.