Have a personal or library account? Click to login

Lyapunov Function based Criteria for Ship Rolling in Random Beam Seas

By:
Open Access
|Oct 2019

References

  1. 1. Balcer L.: Location of ship rolling axis, Polish Maritime Research, vol. 11, no. 1, pp. 3–7, 2004.
  2. 2. Biran, A. B.: Ship Hydrostatics and stability. Butterworth-Heinemann, Oxford, 2003.10.1016/B978-075064988-9/50003-1
  3. 3. Belenky, V. L. and N. B. Sevastianov Stability and Safety of Ships: Risk of Capsizing (2nd ed), SNAME, Jersey City, 2007.
  4. 4. Caldeira-Sariava, F.: The boundedness of solutions of a Leinard Equation arising in the theory of ship rolling. IMA J. Appl. Math, 36, pp. 126–139.10.1093/imamat/36.2.129
  5. 5. Chai W., Naess A. and Leira B. J.: Filter models for prediction of stochastic ship roll response, Probab. Eng. Mech., 41, pp. 104–114, 2015.10.1016/j.probengmech.2015.06.002
  6. 6. Chai W., Naess A., and Leira B. J.: Stochastic dynamic analysis and reliability of a vessel rolling in random beam seas, J. Ship Res., 59(2), pp. 113–131, 2015.10.5957/JOSR.59.2.140059
  7. 7. Chai W., Naess A. and Leira B. J.: Stochastic nonlinear ship rolling in random beam seas by the path integration method, Probab. Eng. Mech., 44, pp. 43–52, 2016.10.1016/j.probengmech.2015.10.002
  8. 8. Chai W., Naess A. and Leira B. J.: Long-term extreme response and reliability of a vessel rolling in random beam sea, J. Offshore Mech. and Arctic Eng., 140, 11601, pp. 1–9, 2018.10.1115/1.4037789
  9. 9. Dostal L. and Kreuzer E.: Probabilistic approach to large amplitude ship rolling in random seas, Proceedings of the Institution of Mechanical Engineers. Part C, Journal of Mechanical Engineering Science, 225, pp. 2464–2476, 2011.10.1177/0954406211414523
  10. 10. Dostal L., Kreuzer E. and Namachchivaya: Non-standard stochastic averaging of large-amplitude ship rolling in random seas, Proceedings of the Royal Society A, 258, pp. 1–25, 2012.
  11. 11. Haddara M.: Modified approach for the application of Fokker – Plank equation to the nonlinear ship motions in random waves. Int. Shipbuilding Prog., 21(242), pp. 283–288, 1974.10.3233/ISP-1974-2124201
  12. 12. Hutchison B. L.: The transverse plane motions of ships, SNAME Marine Tech., vol. 28, No. 2, pp. 55–72, 1991.10.5957/mt1.1991.28.2.55
  13. 13. Jiang C., Troesch A. and Shaw, S.: Capsize criteria for ship models with Memory-Dependent Hydrodynamics and Random Excitation, Philos. Trans. R. Soc. Lond. Ser. A, 358(1771), pp. 1761–1791, 2000.10.1098/rsta.2000.0614
  14. 14. Jiang C.: Highly nonlinear rolling motion leading to capsize, University of Michigan, Ann Arbor, 1995.
  15. 15. Karakas S. C., Pesman E. and Ucer E.: Control design of fin roll stabilization in beam seas based on Lyapunov’s direct method, Polish Maritime Research, No 2(73) Vol. 19, pp. 25–30, 2012.10.2478/v10012-012-0011-9
  16. 16. Kushner H. J.: Stochastic stability and control, Academic Press, New York, 1967.
  17. 17. Kloden PE, Platen E: Numerical solution of stochastic differential equations. New York: Springer; 1995.
  18. 18. La Salle, J.P. and Lefschetz, S.: 1961. Stability by Lyapunov’s Direct Method with Applications. Academic Press, New York.
  19. 19. Long, Z.Z., Lee, S.K., Kim, J.Y.: Estimation of survival probability for a ship in beam seas using the safe basin, Ocean Eng. Vol: 37, 418–424, 2010.10.1016/j.oceaneng.2009.11.003
  20. 20. Moshchuk N., Ibrahim R. A. and Khasminskii R.: Response statics of ocean structures to nonlinear hydrodynamics loading Part I: Gaussian ocean waves, Jounal of Sound and Vibration, 184(4), pp. 681–701, 1995.10.1006/jsvi.1995.0341
  21. 21. Odabasi, A.Y.: Stochastic stability of ships in following seas, Schiff &Hafen, 3, pp. 223–226, 1979.
  22. 22. Ozkan, I.R.: Total (practical) Stability of ships, Ocean Eng., 8, pp. 551–598.10.1016/0029-8018(81)90040-8
  23. 23. Rainey, R.C.T., Thompson, J.M.T.: The transient capsize diagram-a new method of quantifying stability analysis. J. Ship Res. 35 (1), pp. 58–92. 1991.10.5957/jsr.1991.35.1.58
  24. 24. Roberts J.: A Stochastic Theory for Nonlinear Ship Rolling in Irregular Seas, J. Ship Res., 26(4), pp. 229–245, 1982.10.5957/jsr.1982.26.4.229
  25. 25. Schurz H.: Verification of Lyapunov functions for the analysis of stochastic Lienard equations. J Sound Vib., 325: pp. 938–49, 2009.10.1016/j.jsv.2009.04.004
  26. 26. Soliman, M.S., Thompson, J.M.T.: Transient and steady state analysis of capsize phenomena. Appl. Ocean Res. 13 (2), 82–92, 1991.10.1016/S0141-1187(05)80065-3
  27. 27. Thompson, J.M.T.: Loss of engineering integrity due to the erosion of absolute and transient basin boundaries, Proceedings of IUTAM Symposium on the Dynamics of Marine Vehicles and Structures in Waves, pp. 313–320, 1989.10.1007/978-3-642-83578-0_39
  28. 28. Ucer E.: Examination of the trawlers in beam seas using safe basins, Ocean Eng., 38(17-18), pp. 1908–1915, 2011.10.1016/j.oceaneng.2011.09.027
  29. 29. Yilmaz H.: Analyzing form parameters of fishing vessels point of view of practical stability criteria in preliminary design stage, Yildiz Technical University, Istanbul, 1998.
DOI: https://doi.org/10.2478/pomr-2019-0040 | Journal eISSN: 2083-7429 | Journal ISSN: 1233-2585
Language: English
Page range: 6 - 14
Published on: Oct 18, 2019
Published by: Gdansk University of Technology
In partnership with: Paradigm Publishing Services
Publication frequency: 4 times per year

© 2019 Erdem Üçer, published by Gdansk University of Technology
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.