Have a personal or library account? Click to login

Design of Jack-Up Platform for 6 MW Wind Turbine: Parametric Analysis Based Dimensioning of Platform Legs

Open Access
|Jul 2019

References

  1. 1. GWEC. (2018). Global Wind Statistics 2017. Global Wind Energy Council, 14 February 2018.
  2. 2. http://www.polenergia.pl/pol/pl/strona/farmy-morskie (12/12/2018)
  3. 3. https://www.equinor.com/en/what-we-do/hywind-where-the-wind-takes-us.html (12/12/2018)
  4. 4. Fukushima Floating Offshore Wind Farm Demonstration Project (Fukushima FORWARD). Source: http://www.fukushima-forward.jp/pdf/pamphlet3.pdf (13/12/2018)
  5. 5. Fulton G.R., Malcolm D.J., Elwany H., Stewart W., Moroz E., Dempster H.: Semi-Submersible Platform and Anchor Foundation Systems for Wind Turbine Support. National Renewable Energy Laboratory (U.S.), Subcontract Report NREL/SR-500-40282, December 2007
  6. 6. Bachynski E.E., Moan T. (2012). Design considerations for tension leg platform wind turbines. Marine Structures 29 (2012) 89–114.10.1016/j.marstruc.2012.09.001
  7. 7. Żywicki J., Dymarski P., Ciba E., Dymarski C. (2017). Design of Structure of Tension Leg Platform for 6 MW Offshore Wind Turbine Based on Fem Analysis. Polish Maritime Research 24(s1), 230-241. https://doi.org/10.1515/pomr-2017-004310.1515/pomr-2017-0043
  8. 8. Dymarski C., Dymarski P., Żywicki J. (2017). Technology Concept of TLP Platform Towing and Installation in Waters with Depth of 60 m. Polish Maritime Research 24(s1), 59-66. https://doi.org/10.1515/pomr-2017-002210.1515/pomr-2017-0022
  9. 9. Karimirad M., Moan T. (2012). Feasibility of the Application of a Spar-type Wind Turbine at a Moderate Water Depth. DeepWind, 19-20 January 2012, Trondheim, Norway. Energy Procedia 24(2012) 340-35010.1016/j.egypro.2012.06.117
  10. 10. Duan F., Hu Z., Niedzwecki J.M. (2016). Model test investigation of a spar floating wind turbine. Marine Structures 49 (2016) 76-9610.1016/j.marstruc.2016.05.011
  11. 11. Dymarski P. Ciba E. (2017). Design of a cell-spar platform for a 6 MW wind turbine. Parametric analysis of the mooring system. Twenty First International Conference on Hydrodynamics in Ship Design and Operation -HYDRONAV, Gdańsk, 28-29 June 2017
  12. 12. Yeter B., Garbatov Y., Soares C.G. (2014). Fatigue damage analysis of a fixed offshore wind turbine supporting structure. Developments in Maritime Transportation and Exploitation of Sea Resources, Taylor & Francis Group, London10.1201/b15813-51
  13. 13. Velarde J., Bachynski E.E. (2017). Design and fatigue analysis of monopile foundations to support the DTU 10 MW offshore wind turbine. 14th Deep Sea Offshore Wind R&D Conference, EERA DeepWind’2017, 18-20 January 2017, Trondheim, Norway. Energy Procedia 137 (2017) 3–1310.1016/j.egypro.2017.10.330
  14. 14. Bogdaniuk M. (2017). Estimation of the fatigue life of the hull of TLP [in Polish]. Technical Report. Polish Register of Shipping, Gdańsk 2017
  15. 15. Rozmarynowski B., Mikulski T. (2018). Selected problems of sensitivity and reliability of a jack-up platform. Polish Maritime Research 25(1(97)), 77-84. https://doi.org/10.2478/pomr-2018-000910.2478/pomr-2018-0009
  16. 16. Dymarski C., Dymarski P., Żywicki J. (2015). DESIGN AND STRENGTH CALCULATIONS OF THE TRIPOD SUPPORT STRUCTURE FOR OFFSHORE POWER PLANT. Polish Maritime Research 22(1(85)), 36-46. https://doi.org/10.1515/pomr-2015-000610.1515/pomr-2015-0006
  17. 17. Kahsin M., Łuczak M. (2015). Numerical Model Quality Assessment of Offshore Wind Turbine Supporting Structure Based on Experimental Data. Structural Health Monitoring 2015: System Reliability for Verification and Implementation: Proceedings of the 10th International Workshop on Structural Health Monitoring. Vol. 1/ed. Fu-Kuo Chang, Fotis Kopsaftopoulos 439 North Duke Street · Lancaster, PA 17602-4967, U.S.A. : DEStech Publications, Inc., 2015, 2817-282410.12783/SHM2015/349
  18. 18. Wilson J.F.: Dynamics of Offshore Structures (2nd Edition). John Wiley & Sons, Inc., Hoboken, New Jersey, 2003
  19. 19. Chandrasekaran S.: Dynamic Analysis and Design of Offshore Structures (Ocean Engineering & Oceanography). Springer, New Delhi, 201510.1007/978-81-322-2277-4
  20. 20. Sarpkaya T. Wave Forces on Offshore Structures. Cambridge University Press, New York, 201010.1017/CBO9781139195898
  21. 21. Offshore Standards DNV-OS-J103 (2013). Design of Floating Wind Turbine Structures. Det Norske Veritas, June 2013
  22. 22. Niezgodziński M.E., Niezgodziński T.: Strength formulas, diagrams, and tables [in Polish]. WNT, Warszawa 2013.
  23. 23. Dymarski P., Ciba E., Marcinkowski T. (2016). Effective method for determining environmental loads on supporting structures for offshore wind turbines. Polish Maritime Research 23(1(89)), 52-60. https://doi.org/10.1515/pomr-2016-000810.1515/pomr-2016-0008
  24. 24. Recommended Practice DNV-RP-C205 (2010). Environmental Conditions and Environmental Loads. Det Norske Veritas, October 2010
  25. 25. Sarpkaya T. (1986). In-line and transverse forces on smooth and rough cylinders in oscillatory flow at high Reynolds numbers, Monterey, California. Naval Postgraduate School
  26. 26. Product Portfolio Overview. The Senvion 6.XM series.
  27. 27. Jonkman J., Butterfield S., Musial W., Scott G. (2009). Definition of a 5-MW Reference Wind Turbine for Offshore System Development. National Renewable Energy Laboratory, Technical Report NREL/TP-500-38060 February 200910.2172/947422
  28. 28. Kooijman H.J.T., Lindenburg C., Winkelaar D., van der Hooft E.L. (2003). DOWEC 6 MW PRE-DESIGN. Aero-elastic modelling of the DOWEC 6 MW pre-design in PHATAS. Report DOWEC-F1W2-HJK-01-046/9 (public version). September 2003
  29. 29. Recommended Practice DNVGL-RP-C203 (2016). Fatigue design of offshore steel structures. DNV GL, April 2016
  30. 30. Offshore Standards DNVGL-OS-C101 (2016). Design of offshore steel structures, general - LRFD method. April 2016
  31. 31. EUROPEAN STANDARD IEC 61400-3 (2009). Wind turbines - Part 3: Design requirements for offshore wind turbines (IEC 61400-3:2009)
DOI: https://doi.org/10.2478/pomr-2019-0038 | Journal eISSN: 2083-7429 | Journal ISSN: 1233-2585
Language: English
Page range: 183 - 197
Published on: Jul 12, 2019
Published by: Gdansk University of Technology
In partnership with: Paradigm Publishing Services
Publication frequency: 4 times per year

© 2019 Paweł Dymarski, published by Gdansk University of Technology
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.