Have a personal or library account? Click to login

Selected Problems of Experimental Testing Marine Stern Tube Bearings

Open Access
|Jul 2019

References

  1. 1. R. Orndorff :Water lubricated rubber bearings, history and new developments, Nav Eng J, 1985, pp. 39–52,.10.1111/j.1559-3584.1985.tb01877.x
  2. 2. H. Hirani and M. Verma: Tribological study of elastomeric bearings for marine propeller shaft system, Tribol. Int., vol. 42, 2009, No. 2, pp. 378–390.10.1016/j.triboint.2008.07.014
  3. 3. W. Litwin and C. Dymarski: Experimental research on water-lubricated marine stern tube bearings in conditions of improper lubrication and cooling causing rapid bush wear, Tribol. Int., vol. 95, 2016, pp. 449–455,.10.1016/j.triboint.2015.12.005
  4. 4. W. Litwin : Properties comparison of rubber and three layer PTFE-NBR-bronze water lubricated bearings with lubricating grooves along entire bush circumference based on experimental tests, Tribol. Int., vol. 90, 2015, pp. 404–411.10.1016/j.triboint.2015.03.039
  5. 5. B. J. Blair: Getting the most from your bearings. World Pumps, vol. 2016,No. 7–8, pp. 36–40,.10.1016/S0262-1762(16)30169-9
  6. 6. M. Wodtke and M. Wasilczuk: Evaluation of apparent Young’s modulus of the composite polymer layers used as sliding surfaces in hydrodynamic thrust bearings, Tribol. Int., vol. 97, 2016, pp. 244–252.10.1016/j.triboint.2016.01.040
  7. 7. W. Litwin, A. Olszewski, and M. Wodtke: Influence of Shaft Misalignment on Water Lubricated Turbine Sliding Bearings with Various Bush Modules of Elasticity. Key Eng. Mater., vol. 490, 2011, pp. 128–134,10.4028/www.scientific.net/KEM.490.128
  8. 8. W. Litwin: Water lubricated marine stern tube bearings – Attempt at estimating hydrodynamic capacity,” in Proceedings of the ASME/STLE International Joint Tribology Conference 2009, IJTC2009, 2010.10.1115/IJTC2009-15068
  9. 9. W. Litwin: Influence of local bush wear on water lubricated sliding bearing load carrying capacity. Tribol. Int., vol. 103, 2016.10.1016/j.triboint.2016.06.044
  10. 10. Q. Hongling, Z. Xincong, X. Chuntao, W. Hao, and L. Zhenglin: Tribological Performance of a Polymer Blend of NBR Used for Stern Bearings, 2012, pp. 133–139,.10.2174/1874155X01206010133
  11. 11. Y. Wang, X. Shi, and L. Zhang,: Experimental and numerical study on water-lubricated rubber bearings, Ind. Lubr. Tribol. Exp., vol. 2, 2014, no. 51175275, pp. 282–288,.10.1108/ILT-11-2011-0098
  12. 12. M. Del Din and E. Kassfeldt: Wear characteristics with mixed lubrication conditions in a full scale journal bearing, Wear, vol. 232, 1999, no. 2, pp. 192–198,10.1016/S0043-1648(99)00145-3
  13. 13. D. L. Cabrera, N. H. Woolley, D. R. Allanson, and Y. D Tridimas: Film pressure distribution in water-lubricated rubber journal bearings, Proc. Inst. Mech. Eng. Part J J. Eng. Tribol., vol. 219, 2005, no. 2, pp. 125–132,10.1243/135065005X9754
  14. 14. Y. Zhimin et al.: Study on tribological and vibration performance of a new UHMWPE/graphite/NBR water lubricated bearing material, Wear, vol. 332–333, 2015, pp. 872–878.10.1016/j.wear.2014.12.054
  15. 15. R. Colsher, I. Anwar, J. Dunfee, and M. Kandl: Development of Water Lubricated Bearing for Steam Turbine Application, J. Lubr. Technol., vol. 105, 1983, no. 3, p. 318.10.1115/1.3254600
  16. 16. G. Gao, Z. Yin, D. Jiang, and X. Zhang: Numerical analysis of plain journal bearing under hydrodynamic lubrication by water, Tribol. Int., vol. 75, 2014, pp. 31–38.10.1016/j.triboint.2014.03.009
  17. 17. A.-F. Cristea, J. Bouyer, M. Fillon, and M. D. Pascovici; Transient Pressure and Temperature Field Measurements of a Lightly Loaded Circumferential Groove Journal Bearing, Tribol. Trans., vol. 54, 2011, no. 5, pp. 806–823.10.1080/10402004.2011.604758
  18. 18. R. Gawarkiewicz and M. Wasilczuk: Wear measurements of self-lubricating bearing materials in small oscillatory movement, Wear, vol. 263, 2007, no. 1–6 SPEC. ISS., pp. 458–462.10.1016/j.wear.2006.12.060
  19. 19. A. Olszewski, M. Wodtke, and P. Hryniewicz: Experimental Investigation of Prototype Water-Lubricated Compliant Foil Bearings, Key Eng. Mater., vol. 490, 2011, pp. 97–105.10.4028/www.scientific.net/KEM.490.97
  20. 20. M. Wodtke, A. Schubert, M. Fillon, M. Wasilczuk, and P. Pajaczkowski: Large hydrodynamic thrust bearing: Comparison of the calculations and measurements, Proc. Inst. Mech. Eng. Part J J. Eng. Tribol., vol. 228, 2014, no. 9, pp. 974–983.10.1177/1350650114528317
  21. 21. M. Mehdizadeh and F. Khodabakhshi: An investigation into failure analysis of interfering part of a steam turbine journal bearing, Case Stud. Eng. Fail. Anal., vol. 2, 2014, no. 2, pp. 61–68,.10.1016/j.csefa.2014.04.001
  22. 22. W. Wieleba: The Mechanism of Tribological Wear of Thermoplastic Materials, Arch. Civ. Mech. Eng., Vol. VII, 2007, No. 4.10.1016/S1644-9665(12)60236-2
  23. 23. J. Takabi and M. M. Khonsari: On the thermally-induced seizure in bearings: A review, Tribol. Int., vol. 91, 2015, pp. 118–130.10.1016/j.triboint.2015.05.030
  24. 24. Q. Wang : Seizure failure of journal-bearing conformal contacts, Wear, vol. 210, 1997, no. 1–2, pp. 8–16.10.1016/S0043-1648(97)00064-1
  25. 25. D. Garner, A. L.-P. of the 13th, and undefined 1984, Temperature measurements in fluid film bearings, oaktrust. library.tamu.edu.
  26. 26. P. De Choudhury and E. W. Barth: A Comparison of Film Temperatures and Oil Discharge Temperature for a Tilting-Pad Journal Bearing, J. Tribol., vol. 103, 1981, no. 1, p. 115.10.1115/1.3251598
  27. 27. S. Strzelecki, Z. S.- Tribologia, and undefined 2011, Operating temperatures of the bearing system of grinder spindle, t.tribologia.eu.
  28. 28. D. G. Lee and S. S. Kim: Failure analysis of asbestos-phenolic composite journal bearing, Compos. Struct., vol. 65, 2004, no. 1, pp. 37–46.10.1016/j.compstruct.2003.10.004
  29. 29. S. B. Glavatskih and M. Fillon: TEHD Analysis of Thrust Bearings With PTFE-Faced Pads, J. Tribol., vol. 128, 2006, no. 1, p. 49.10.1115/1.1843833
  30. 30. O. Nosko, T. Nagamine, A. L. Nosko, A. M. Romashko, H. Mori, and Y. Sato: Measurement of temperature at sliding polymer surface by grindable thermocouples, Tribol. Int., vol. 88, 2015, pp. 100–106.10.1016/j.triboint.2015.03.015
  31. 31. M. Hoić, M. Hrgetić, and J. Deur: Design of a pin-on-disc-type CNC tribometer including an automotive dry clutch application, Mechatronics, vol. 40, 2016, pp. 220–232.10.1016/j.mechatronics.2016.10.016
  32. 32. E. Ciulli, P. Forte, M. Libraschi, and M. Nuti : Set-up of a novel test plant for high power turbomachinery tilting pad journal bearings, Tribol. Int., vol. 127, no. November 2017, pp. 276–287, 2018.10.1016/j.triboint.2018.06.014
  33. 33. P. Śliwiński : The Influence of Water and Mineral Oil On Mechanical Losses in the Displacement Pump for Offshore and Marine Applications: Polish Marit. Res., vol. 25, 2018, no. s1, pp. 178–188.10.2478/pomr-2018-0040
  34. 34. A. Dadouche, M. Fillon, and J. . Bligoud: Experiments on thermal effects in a hydrodynamic thrust bearing, Tribol. Int., vol. 33, 2000, no. 3–4, pp. 167–174.10.1016/S0301-679X(00)00023-2
  35. 35. B. Remy, B. Bou-Saïd, and T. Lamquin : Fluid inertia and energy dissipation in turbocharger thrust bearings, Tribol. Int., vol. 95, 2016, pp. 139–146.10.1016/j.triboint.2015.11.014
  36. 36. S. B. Glavatskih: A method of temperature monitoring in fluid film bearings, Tribol. Int., vol. 37, 2004, no. 2, pp. 143–148.10.1016/S0301-679X(03)00050-1
  37. 37. T. W. Kerlin and M. Johnson: Practical Thermocouple Thermometry (2nd Edition). ISA, 2012.
  38. 38. W. Dai, B. Kheireddin, H. Gao, and H. Liang : Roles of nanoparticles in oil lubrication, Tribol. Int., vol. 102, 2016, pp. 88–98.10.1016/j.triboint.2016.05.020
  39. 39. J. Duchowski : Examination of journal bearing filtration requirements, Lubr. Eng., vol. 09, 1998, pp. 1–9.
  40. 40. J. Duchowski, H. International, and J. Duchowski: Filtration requirements for journal bearings exposed to different contaminant levels, Lubr. Eng., vol. 06, 2002, no. July, pp. 34–39.
  41. 41. D. Hargreaves and S. C. Sharma: Effects of solid contaminants on journal bearing performance, Proceedings of the 2nd World Tribology Congress, 3-7 September 2001. pp. 237–240.
  42. 42. A. Dadouche and M. J. Conlon: Operational performance of textured journal bearings lubricated with a contaminated fluid, Tribol. Int., vol. 93, 2016, pp. 377–389.10.1016/j.triboint.2015.09.022
  43. 43. M. M. Khonsari and E. R. Booser: Effect of contamination on the performance of hydrodynamic bearings, Proc. Inst. Mech. Eng. Part J J. Eng. Tribol., vol. 220, 2006, no. 5, pp. 419–428.10.1243/13506501J00705
  44. 44. A. Akchurin, R. Bosman, P. M. Lugt, and M. van Drogen: Analysis of Wear Particles Formed in Boundary-Lubricated Sliding Contacts, Tribol. Lett., vol. 63, 2016, no. 2, pp. 1–14.10.1007/s11249-016-0701-z
  45. 45. A. Akchurin, R. Bosman, and P. M. Lugt: Generation of wear particles and running-in in mixed lubricated sliding contacts, Tribol. Int., vol. 110, 2017, no. February, pp. 201–208.10.1016/j.triboint.2017.02.019
  46. 46. A. Akchurin, R. Bosman, and P. M. Lugt: A Stress-Criterion-Based Model for the Prediction of the Size of Wear Particles in Boundary Lubricated Contacts, Tribol. Lett., vol. 64, 2016, no. 3, pp. 1–12.10.1007/s11249-016-0772-x
  47. 47. G. Pintaude: Characteristics of Abrasive Particles and Their Implications on Wear, New Tribol. Ways, no. April 2011.10.5772/14618
  48. 48. C. Q. Yuan, Z. Peng, X. C. Zhou, and X. P. Yan : The characterization of wear transitions in sliding wear process contaminated with silica and iron powder, Tribol. Int., vol. 38, 2005, no. 2, pp. 129–143.10.1016/j.triboint.2004.06.007
  49. 49. L. Peña-Parás et al.: Effects of substrate surface roughness and nano/micro particle additive size on friction and wear in lubricated sliding, Tribol. Int., vol. 119, 2018, no. February 2017, pp. 88–98.10.1016/j.triboint.2017.09.009
  50. 50. S. M. Park, G. H. Kim, and Y. Z. Lee: Investigation of the wear behaviour of polyacetal bushings by the inflow of contaminants, Wear, vol. 271, 2011, no. 9–10, pp. 2193–2197.10.1016/j.wear.2010.12.033
  51. 51. E. Szymczak and D. Burska : Charakterystyka rozkładu wielkości cząstek in situ w strefie rozpływu wód Wisły (Zatoka Gdańska) (in Polish). ?? pp. 1–2, 2014.
  52. 52. M. Damrat, A. Zaborska, and M. Zajaczkowski: Sedimentation from suspension and sediment accumulation rate in the River Vistula prodelta, Gulf of Gdańsk (Baltic Sea), Oceanologia, vol. 55, 2013, no. 4, pp. 937–950.10.5697/oc.55-4.937
  53. 53. I. Geologiczny and I. Geologii ?? : Litologia i skład mineralny osadów z dna Basenu Gdańskiego (in Polish), ?? vol. 313, 1980, no. 2.
  54. 54. T. Leipe and B. Sea : The kaolinite/chlorite clay mineral ratio in surface sediments of the southern Baltic Sea as an indicator for long distance transport of fine-grained material, Baltica, vol. 16, 2003, pp. 31–36.
  55. 55. A. Ya and T. Yu : Revealing the influence of various factors on concentration and spatial distribution of suspended matter based on remote sensing data, Proc. SPIE, vol. 9638, 2015, pp. 1–12.10.1117/12.2193905
  56. 56. Y. Solomonov: Experimental investigation of tribological characteristics of water-lubricated bearings materials on a pin-on-disk test rig, Yuriy Solomonov Master of Philosophy Thesis, The University of Adelaide School of Mechanical Engineering April 2014.
  57. 57. C. L. Dong, C. Q. Yuan, X. Q. Bai, Y. Yang, and X. P. Yan: Study on wear behaviours for NBR/stainless steel under sand water-lubricated conditions, Wear, vol. 332–333, 2015, pp. 1012–1020.10.1016/j.wear.2015.01.009
  58. 58. C. Yuan, Z. Guo, W. Tao, C. Dong, and X. Bai: Effects of different grain sized sands on wear behaviours of NBR/casting copper alloys, Wear, vol. 384–385, 2017, pp. 185–191.10.1016/j.wear.2017.02.019
  59. 59. C. P. Gao et al.: Tribological behaviors of epoxy composites under water lubrication conditions, Tribol. Int., vol. 95, 2016, pp. 333–341.10.1016/j.triboint.2015.11.041
  60. 60. S. Thörmann, M. Markiewicz, and O. von Estorff: On the stick-slip behaviour of water-lubricated rubber sealings, J. Sound Vib., vol. 399, 2017, pp. 151–168.10.1016/j.jsv.2017.03.021
  61. 61. B. S. Mann and V. Arya : An experimental model for mixed friction during running-in, Wear, vol. 253, 2002, no. 5–6, pp. 541–549.10.1016/S0043-1648(02)00065-0
  62. 62. L. Deleanu and C. Georgescu: Water lubrication of PTFE composites, Ind. Lubr. Tribol., vol. 67, 2015, no. 1, pp. 1–8.10.1108/ilt-11-2011-0095
  63. 63. S. Chen et al.: Tribological properties of polyimide-modified UHMWPE for bushing materials of seawater lubricated sliding bearings, Tribol. Int., vol. 115, 2017, no. 126, pp. 470–476.10.1016/j.triboint.2017.06.011
  64. 64. A. Ismailov, M. Järveläinen, and E. Levänen: Problematics of friction in a high-speed rubber-wheel wear test system: A case study of irregularly rough steel in water lubricated contact, Wear, vol. 408–409, 2018, no. December 2017, pp. 65–71.10.1016/j.wear.2018.05.002
  65. 65. C. Dong, L. Shi, L. Li, X. Bai, C. Yuan, and Y. Tian : Stick-slip behaviours of water lubrication polymer materials under low speed conditions, Tribol. Int., vol. 106, 2017, no. October 2016, pp. 55–61.10.1016/j.triboint.2016.10.027
  66. 66. S. Meicke and R. Paasch : Seawater lubricated polymer journal bearings for use in wave energy converters, Renew. Energy, vol. 39, 2012, no. 1, pp. 463–470.10.1016/j.renene.2011.08.041
  67. 67. S. Jiang, Z. Guo, C. Yuan, A. Liu, and X. Bai : Study on the tribological properties of modified polyurethane material for water-lubricated stern bearing, J. Appl. Polym. Sci., vol. 135, 2018, no. 22, pp. 1–13.10.1002/app.46305
  68. 68. J. Bouyer and M. Fillon : Experimental measurement of the friction torque on hydrodynamic plain journal bearings during start-up, Tribol. Int., vol. 44, 2011, no. 7–8, pp. 772–781.10.1016/j.triboint.2011.01.008
  69. 69. Ł. Breńkacz and G. Żywica :The experimental identification of the dynamic coefficients for two hydrodynamic journal bearings, SIRM 2017, Schwingungen rotierenden Maschinen, vol. 24, 2017, no. 96, pp. 157–164.
  70. 70. T. Dimond, R. D. Rockwell, P. N. Sheth, and P. E. Allaire: A New Fluid Film Bearing Test Rig for Oil and Water Bearings, Struct. Dyn. Parts A B, Vol. 5, 2008, pp. 1101–1110.10.1115/GT2008-50654
  71. 71. N. Wang and Q. Meng : Research on wireless nondestructive monitoring method for film pressure of water-lubricated bearing, Ind. Lubr. Tribol., vol. 67, 2015, no. 4, pp. 349–358.10.1108/ILT-08-2014-0079
  72. 72. N. Wang, Q. Meng, P. Wang, T. Geng, and X. Yuan: Experimental Research on Film Pressure Distribution of Water-Lubricated Rubber Bearing With Multiaxial Grooves, J. Fluids Eng., vol. 135, 2013, no. 8, p. 84501.10.1115/1.4024147
  73. 73. S. Yamajo and F. Kikkawa: Development and Application of PTFE Compound Bearings, Dyn. Position. Conf., 2004.
DOI: https://doi.org/10.2478/pomr-2019-0034 | Journal eISSN: 2083-7429 | Journal ISSN: 1233-2585
Language: English
Page range: 142 - 154
Published on: Jul 12, 2019
Published by: Gdansk University of Technology
In partnership with: Paradigm Publishing Services
Publication frequency: 4 times per year

© 2019 Agnieszka Barszczewska, Ewa Piątkowska, Wojciech Litwin, published by Gdansk University of Technology
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.