Have a personal or library account? Click to login
Injury Prediction Models for Onshore Road Network Development Cover

Injury Prediction Models for Onshore Road Network Development

Open Access
|Jul 2019

References

  1. 1. AASHTO, 2010. Highway Safety Manual. American Association of State Highway and Transportation Officials, Washington.
  2. 2. Abdel-Aty, M., Radwan, A.E., 2000a. Developing crash predictive models for a principal arterial, in: Traffic Safety on Two Continents. pp. 177–194.
  3. 3. Abdel-Aty, M., Radwan, A.E., 2000b. Modeling traffic accident occurrence and involvement. Accid. Anal. Prev. 32 5, 633–42.10.1016/S0001-4575(99)00094-9
  4. 4. Abdel-Aty, M., Radwan, A.E., 2000c. Modeling traffic accident occurrence and involvement. Accid. Anal. Prev. 32 5, 633–42.10.1016/S0001-4575(99)00094-9
  5. 5. Al-ghamdi, A.S., 2002. Using logistic regression to estimate the influence of accident factors on accident severity. Accid. Anal. Prev. 34, 729–741.10.1016/S0001-4575(01)00073-2
  6. 6. Ambros, J., Sedoník, J., 2016. A Feasibility Study for Developing a Transferable Accident Prediction Model for Czech Regions. Transp. Res. Procedia 14, 2054–2063. doi:10.1016/J.TRPRO.2016.05.10310.1016/J.TRPRO.2016.05.103
  7. 7. Anastasopoulos, P.C., Mannering, F., Shankar, V.N., Haddock, J.E., 2012a. A study of factors affecting highway accident rates using the random-parameters tobit model. Accid. Anal. Prev. 45, 628–33. doi:10.1016/j.aap.2011.09.01510.1016/j.aap.2011.09.015
  8. 8. Anastasopoulos, P.C., Mannering, F., Shankar, V.N., Haddock, J.E., 2012b. A study of factors affecting highway accident rates using the random-parameters tobit model. Accid. Anal. Prev. 45, 628–33. doi:10.1016/j.aap.2011.09.01510.1016/j.aap.2011.09.015
  9. 9. Anastasopoulos, P.C., Shankar, V.N., Haddock, J.E., Mannering, F., 2012c. A multivariate tobit analysis of highway accident-injury-severity rates. Accid. Anal. Prev. 45, 110–9. doi:10.1016/j.aap.2011.11.00610.1016/j.aap.2011.11.006
  10. 10. Asgarzadeh, M., Verma, S., Mekary, R.A., Courtney, T.K., Christiani, D.C., 2017. The role of intersection and street design on severity of bicycle-motor vehicle crashes. Inj. Prev. 23 3, 179–185. doi:10.1136/injuryprev-2016-04204510.1136/injuryprev-2016-042045
  11. 11. Bared, J.G., Vogt, A., 1998. Accident models for two-lane rural roads: segments and intersections. Federal Highway Administration.
  12. 12. Bhatia, R., Wier, M., Weintraub, J., Humphreys, E.H., Seto, E., 2009. An area-level model of vehicle-pedestrian injury collisions with implications for land use and transportation planning. Accid. Anal. Prev. doi:10.1016/j.aap.2008.10.00110.1016/j.aap.2008.10.001
  13. 13. Broughton, J., 1991. Forecasting road accident casualties in Great Britain. Accid. Anal. Prev. 23 5, 353–362.10.1016/0001-4575(91)90056-B
  14. 14. Budzynski, M., Jamroz, K., Kustra, W., Gaca, S., Michalski, L., 2011. Instructions for road safety auditors – Part One Assessing the effects of road infrastructure projects on road safety, Part Two Road safety audit – for the GDDKiA. Gdansk University of Technology, Krakow University of Technology, Gdansk.
  15. 15. Budzynski, M., Jamroz, K., Kustra, W., Zukowska, J., 2015. Modeling of traffic safety indicators on Polish national road network, in: Safety and Reliability of Complex Engineered Systems - Proceedings of the 25th European Safety and Reliability Conference, ESREL 2015. pp. 23–30.10.1201/b19094-6
  16. 16. Budzynski, M., Kustra, W., Jamroz, K., Gaca, S., Michalski, L., Guminska, L., 2013. Method for forecasting road safety indicators for the purposes of economic effectiveness analyses for projects on Poland’s national roads – for the GDDKiA. Gdansk University of Technology, Krakow University of Technology, Gdansk.
  17. 17. Budzynski, M., Rys, D., Kustra, W., 2017. Selected Problems of Transport in Port Towns - Tri-City as an Example. Polish Marit. Res. 24 s1, 16–24. doi:10.1515/pomr-2017-001610.1515/pomr-2017-0016
  18. 18. Cafiso, S., Di Graziano, A., Di Silvestro, G., La Cava, G., Persaud, B., 2010. Development of comprehensive accident models for two-lane rural highways using exposure, geometry, consistency and context variables. Accid. Anal. Prev. 42 4, 1072–9. doi:10.1016/j.aap.2009.12.01510.1016/j.aap.2009.12.015
  19. 19. Council, F.M., Harwood, D.W., Hauer, E., Hughes, W.E., Vogt, A., 2000. Prediction of the Expected Safety Performance of Rural Two-Lane Highways. Federal Highway Administration.
  20. 20. Deffenbacher, J.L., Lynch, R.S., Filetti, L.B., Dahlen, E.R., Oetting, E.R., 2003. Anger, aggression, risky behavior, and crash-related outcomes in three groups of drivers. Behav. Res. Ther. 41, 333–349. doi:10.1016/S0005-7967(02)00014-110.1016/S0005-7967(02)00014-1
  21. 21. Donmez, B., Boyle, L.N., Lee, J.D., 2007. Safety implications of providing real-time feedback to distracted drivers. Accid. Anal. Prev. 39 3, 581–590. doi:10.1016/J.AAP.2006.10.00310.1016/J.AAP.2006.10.003
  22. 22. El-Basyouny, K., Sayed, T., 2009. Accident prediction models with random corridor parameters. Accid. Anal. Prev. 41 5, 1118–23. doi:10.1016/j.aap.2009.06.02510.1016/j.aap.2009.06.02519664455
  23. 23. Elvik, R., 2008. The predictive validity of empirical Bayes estimates of road safety. Accid. Anal. Prev. 40 6, 1964–9. doi:10.1016/j.aap.2008.07.00710.1016/j.aap.2008.07.00719068301
  24. 24. Fernandes, A., Neves, J., 2013a. An approach to accidents modeling based on compounds road environments. Accid. Anal. Prev. 53 2013, 39–45. doi:10.1016/j.aap.2012.12.04110.1016/j.aap.2012.12.04123376544
  25. 25. Fernandes, A., Neves, J., 2013b. An approach to accidents modeling based on compounds road environments. Accid. Anal. Prev. 53 2013, 39–45. doi:10.1016/j.aap.2012.12.04110.1016/j.aap.2012.12.041
  26. 26. Garber, N.J., Lei, W., 2001. Stochastic Models Relating Crash Probabilities With Geometric And Corresponding Traffic Characteristics Data. University of Virginia, Charlottesville.
  27. 27. Geedipally, S.R., Lord, D., Dhavala, S.S., 2012a. The negative binomial-Lindley generalized linear model: characteristics and application using crash data. Accid. Anal. Prev. 45 2012, 258–65. doi:10.1016/j.aap.2011.07.01210.1016/j.aap.2011.07.01222269508
  28. 28. Geedipally, S.R., Lord, D., Dhavala, S.S., 2012b. The negative binomial-Lindley generalized linear model: characteristics and application using crash data. Accid. Anal. Prev. 45 2012, 258–65. doi:10.1016/j.aap.2011.07.01210.1016/j.aap.2011.07.012
  29. 29. Hakkert, S., 2011. EuroRAP evaluation experience alongside other measures in Israel, in: EuroRAP Plenary, Policy Seminar and Training Course, Belgrade.
  30. 30. Hauer, E., 2007. Safety Models for Urban Four-lane Undivided Road Segments. Transp. Res. Rec. J. Transp. Res. Board 96–105, 1–22.10.3141/1897-13
  31. 31. Hauer, E., 2004. Statistical Road Safety Modeling. Transp. Res. Rec. J. Transp. Res. Board 1897 May, 81–87. doi:10.3141/1897-1110.3141/1897-11
  32. 32. Hauer, E., 2001. Overdispersion in modelling accidents on road sections and in empirical bayes estimation. Accid. Anal. Prev. 33 6, 799–808.10.1016/S0001-4575(00)00094-4
  33. 33. Hauer, E., 1995. On exposure and accident rate. Traffic Eng. Control 36, 134–138.
  34. 34. Hauer, E., 1986. On the estimation of the expected number of accidents. Accid. Anal. Prev. 18 1, 1–12. doi:10.1016/0001-4575(86)90031-X10.1016/0001-4575(86)90031-X
  35. 35. Hewson, P., 2004. Deprived children or deprived neighbourhoods? A public health approach to the investigation of links between deprivation and injury risk with specific reference to child road safety in Devon County, UK. BMC Public Health 4, 15. doi:10.1186/1471-2458-4-1510.1186/1471-2458-4-1541935615134585
  36. 36. Ivan, J.N., Garder, P.E., Deng, Z., Zhang, C., 2006. The effect of segment characteristics on the severity of head-on crashes on two-lane rural highways. University of Connecticut, University of Maine.
  37. 37. Ivan, J.N., Lord, D., Washington, S.P., 2005. Poisson, Poisson-gamma and zero-inflated regression models of motor vehicle crashes: balancing statistical fit and theory. Accid. Anal. Prev. 37 1, 35–46. doi:10.1016/j.aap.2004.02.00410.1016/j.aap.2004.02.00415607273
  38. 38. Iyinam, A.F., Iyinam, S., Ergun, M., 1997. Analysis of Relationship Between HighwaySafety and Road Geometric Design Elements : Turkish Case. Technical University of Istanbul.
  39. 39. Jamroz, K., 2011. Method of risk management in highway engineering. Gdansk University of Technology, Gdansk.
  40. 40. Jamroz, K., Kustra, W., 2011. The risk atlas of Poland’s national roads 2008-2010. Foundation for Development of Civil Engineering, Gdansk.
  41. 41. Jurewicz, C., Steinmetz, L., 2012. Crash performance of safety barriers on high - speed roads. J. Australas. Coll. Road Saf. 23 3.
  42. 42. Kiec, M., 2009. The impact of the accessibility of the road on conditions and traffic safety - PhD thesis. Cracow University of Technology.
  43. 43. Kustra, W., 2016. Modelling selected road safety measures on long road sections - thesis.
  44. 44. Kustra, W., Budzynski, M., Jamroz, K., Zukowska, J., 2015. Modelling of traffic safety indicators on Polish national road network, in: ESREL 2015 25th European Safety and Reliability Conference. Zurich, p. 7.10.1201/b19094-6
  45. 45. Lao, Y., Wu, Y.-J., Corey, J., Wang, Y., 2011a. Modeling animal-vehicle collisions using diagonal inflated bivariate Poisson regression. Accid. Anal. Prev. 43 1, 220–7. doi:10.1016/j.aap.2010.08.01310.1016/j.aap.2010.08.01321094317
  46. 46. Lao, Y., Wu, Y.-J., Corey, J., Wang, Y., 2011b. Modeling animal-vehicle collisions using diagonal inflated bivariate Poisson regression. Accid. Anal. Prev. 43 1, 220–7. doi:10.1016/j.aap.2010.08.01310.1016/j.aap.2010.08.013
  47. 47. Lee, C., Hellinga, B., Saccomanno, F., 2006. Evaluation of variable speed limits to improve traffic safety. Transp. Res. Part C Emerg. Technol. 14 3, 213–228. doi:10.1016/J.TRC.2006.06.00210.1016/J.TRC.2006.06.002
  48. 48. Lee, J., Mannering, F., 2002. Impact of roadside features on the frequency and severity of run-off-roadway accidents: an empirical analysis. Accid. Anal. Prev. 34 2, 149–61.10.1016/S0001-4575(01)00009-4
  49. 49. Li, R., Shang, P., 2014. Incident duration modeling using flexible parametric hazard-based models. Comput. Intell. Neurosci. 2014, 723427. doi:10.1155/2014/72342710.1155/2014/723427
  50. 50. Litman, T., 2010. Transportation Elasticities, Transportation. Victoria Transport Policy Institute, Victoria.
  51. 51. Lord, D., 2006. Modeling motor vehicle crashes using Poisson-gamma models: examining the effects of low sample mean values and small sample size on the estimation of the fixed dispersion parameter. Accid. Anal. Prev. 38 4, 751–66. doi:10.1016/j.aap.2006.02.00110.1016/j.aap.2006.02.001
  52. 52. Lord, D., Geedipally, S.R., 2012. Examining the Crash Variances Estimated by the Poisson-Gamma and Conway-Maxwell-Poisson Models. Transp. Res. Rec. J. Transp. Res. Board 2241 979, 56–67.10.3141/2241-07
  53. 53. Lord, D., Park, B., 2012. Negative Binomial Regression Models and Estimation Methods, in: Probability Density and Likelihood Functions. Texas A&M University, Korea Transport Institute, pp. 1–15.
  54. 54. Lord, D., Park, P.Y.-J., 2008. Investigating the effects of the fixed and varying dispersion parameters of Poisson-gamma models on empirical Bayes estimates. Accid. Anal. Prev. 40 4, 1441–57. doi:10.1016/j.aap.2008.03.01410.1016/j.aap.2008.03.014
  55. 55. Ma, J., Kockelman, K.M., Damien, P., 2008a. A multivariate Poisson-lognormal regression model for prediction of crash counts by severity, using Bayesian methods. Accid. Anal. Prev. 40 3, 964–75. doi:10.1016/j.aap.2007.11.00210.1016/j.aap.2007.11.002
  56. 56. Ma, J., Kockelman, K.M., Damien, P., 2008b. A multivariate Poisson-lognormal regression model for prediction of crash counts by severity, using Bayesian methods. Accid. Anal. Prev. 40 3, 964–75. doi:10.1016/j.aap.2007.11.00210.1016/j.aap.2007.11.002
  57. 57. Mannering, F., Venkataraman, S., Woodrow, B., 1996. Statistical analysis of accident rural freeways. Accid. Anal. Prev. 28 3, 391–401.10.1016/0001-4575(96)00009-7
  58. 58. Martinelli, F., La Torre, F., Vadi, P., 2009. Calibration of the Highway Safety Manual’s Accident Prediction Model for Italian Secondary Road Network. Transp. Res. Rec. J. Transp. Res. Board 2103, 1–9. doi:10.3141/2103-0110.3141/2103-01
  59. 59. Peer, E., Rosenbloom, T., 2013. When two motivations race: The effects of time-saving bias and sensation-seeking on driving speed choices. Accid. Anal. Prev. 50, 1135–1139. doi:10.1016/J.AAP.2012.09.00210.1016/J.AAP.2012.09.00223021421
  60. 60. Ptak-Chmielewska, A., 2013. Generalised linear models. Warsaw School of Economic, Warsaw.
  61. 61. Rakha, H., Arafeh, M., Abdel-Salam, A.G., Guo, F., Flintsch, A.M., 2010. Linear regression crash prediction models: issues and proposed solutions, Virginia Tech Transportation Institute.
  62. 62. Reurings, M., Jannsen, T., Eenink, R., Elvik, R., Cardoso, J., Stefan, C., 2005. Accident Prediction Models and Road Safety Impact Assessment a state of the art, Ripcord. Ripcord - Iserest.
  63. 63. Ryb, G.E., Dischinger, P.C., Kleinberger, M., McGwin, G., Griffin, R.L., 2013. Aortic injuries in newer vehicles. Accid. Anal. Prev. 59, 253–259. doi:10.1016/J.AAP.2013.06.00710.1016/J.AAP.2013.06.00723831451
  64. 64. Schafer, J., 2006. Penn State Department of Statistics [WWW Document]. Dep. Stat. Eberly Coll. Sci. URL sites. stat.psu.edu
  65. 65. Scott-Parker, B., Watson, B., King, M., Hyde, M., 2012. Young, Inexperienced, and on the Road. Transp. Res. Rec. J. Transp. Res. Board. doi:10.3141/2318-1210.3141/2318-12
  66. 66. Son, H. “Daniel,” Kweon, Y.-J., Park, B. “Brian,” 2011. Development of crash prediction models with individual vehicular data. Transp. Res. Part C Emerg. Technol. 19 6, 1353–1363. doi:10.1016/j.trc.2011.03.00210.1016/j.trc.2011.03.002
  67. 67. Technical Committee 18, 2004. Study on Risk Management for Roads. PIARC.
  68. 68. The National Police Headquarters, 2015. SEWIK - Accident data base.
  69. 69. Vaziri, M., 2010. A comparative appraisal of roadway accident for Asia-Pacific countries. Int. J. Eng. Trans. A Basics 23 2, 111–126.
  70. 70. Wood, G.R., 2005. Confidence and prediction intervals for generalised linear accident models. Accid. Anal. Prev. 37 2, 267–73. doi:10.1016/j.aap.2004.10.00510.1016/j.aap.2004.10.00515667813
  71. 71. Xie, K., Wang, X., Huang, H., Chen, X., 2013. Corridor-level signalized intersection safety analysis in Shanghai, China using Bayesian hierarchical models. Accid. Anal. Prev. 50, 25–33. doi:10.1016/J.AAP.2012.10.00310.1016/J.AAP.2012.10.00323149321
  72. 72. Yannis, G., Papadimitriou, E., Chaziris, A., Broughton, J., 2014. Modeling road accident injury under-reporting in Europe. Eur. Transp. Res. Rev. 6 4, 425–438. doi:10.1007/s12544-014-0142-410.1007/s12544-014-0142-4
  73. 73. Ye, Z., Zhang, Y., Lord, D., 2013a. Goodness-of-fit testing for accident models with low means. Accid. Anal. Prev. 61, 78–86. doi:10.1016/j.aap.2012.11.00710.1016/j.aap.2012.11.00723219076
  74. 74. Ye, Z., Zhang, Y., Lord, D., 2013b. Goodness-of-fit testing for accident models with low means. Accid. Anal. Prev. 61, 78–86. doi:10.1016/j.aap.2012.11.00710.1016/j.aap.2012.11.007
  75. 75. Zhang, W., Huang, Y.-H., Roetting, M., Wang, Y., Wei, H., 2006. Driver’s views and behaviors about safety in China—What do they NOT know about driving? Accid. Anal. Prev. 38 1, 22–27. doi:10.1016/J.AAP.2005.06.01510.1016/J.AAP.2005.06.015
DOI: https://doi.org/10.2478/pomr-2019-0029 | Journal eISSN: 2083-7429 | Journal ISSN: 1233-2585
Language: English
Page range: 93 - 103
Published on: Jul 12, 2019
Published by: Gdansk University of Technology
In partnership with: Paradigm Publishing Services
Publication frequency: 4 times per year

© 2019 Wojciech Kustra, Joanna Żukowska, Marcin Budzyński, Kazimierz Jamroz, published by Gdansk University of Technology
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.