Have a personal or library account? Click to login
New Designs of Centrifugal Magnetic Fluid Seals for Rotating Shafts in Marine Technology Cover

New Designs of Centrifugal Magnetic Fluid Seals for Rotating Shafts in Marine Technology

Open Access
|Jul 2019

References

  1. 1. Y. Mitamura, S. Takahashi, S. Amari, E. Okamoto, S. Murabayashi, I. Nishimura, A magnetic fluid seal for rotary blood pumps: effects of seal structure on long-term performance in liquid, J Artif Organs 14 (2011) 23–30.10.1007/s10047-010-0526-8
  2. 2. J. Lee, C. Ahn, J. Choi, J. Park, S. Song, K. Sun, Development of magnetic bearing system for a new third-generation blood pump, Artif Organs 35 (11) (2011) 1082–1094.10.1111/j.1525-1594.2011.01376.x
  3. 3. Huang W, Wang X. Ferrofluids lubrication: a status report. Lubric Sci 2016;28:3–26.10.1002/ls.1291
  4. 4. Wang Z, Hu Z, Huang W, Wang X. Elastic support of magnetic fluids bearing. J Phys Appl Phys 2017;50:435004.10.1088/1361-6463/aa86f9
  5. 5. Li D, Xu H, He X, Lan H. Study on the magnetic fluid sealing for dry Roots pump. J Magn Magn Mater 2005;289:419–22.10.1016/j.jmmm.2004.11.118
  6. 6. Y. Mitamura et al., “A hydrodynamically suspended, magnetically sealed mechanically noncontact axial flow blood pump: Design of a hydrodynamic bearing,” Artif. Organs, 2007.10.1111/j.1525-1594.2007.00368.x
  7. 7. L. Matuszewski and Z. Szydło, “The application of magnetic fluids in sealing nodes designed for operation in difficult conditions and in machines used in sea environment,” Polish Marit. Res., 2008.10.2478/v10012-007-0083-0
  8. 8. T. Kanno, Y. Kouda, Y. Takeishi, T. Minagawa, and Y. Yamamoto, “Preparation of magnetic fluid having active-gas resistance and ultra-low vapor pressure for magnetic fluid vacuum seals,” Tribol. Int., 1997.10.1016/S0301-679X(97)00060-1
  9. 9. T. Liu, Y. Cheng, and Z. Yang, “Design optimization of seal structure for sealing liquid by magnetic fluids,” in Journal of Magnetism and Magnetic Materials, 2005.10.1016/j.jmmm.2004.11.116
  10. 10. Raj K., Stahl P., Bottenberg W.: Magnetic fluid seals for special applications, LE Transactions, vol.23, no 4, 1980.10.1080/05698198008982987
  11. 11. Mizumoto M.,Imai M., Inoue H.: Development of a centrifugal magnetic liquid seal for superconducting generators, Proc. of the 9th Int. Conference on Fluid Sealing, Noordwijkerhout, Netherlands, 1981.
  12. 12. Wilcock D.F, Gay S.: The role of magnetic fluid seal in modern machinery, Lubrication Engineering, vol.40, no 6, 1984.
  13. 13. Ochoński W.: Dynamic sealing with magnetic fluids, Wear, vol. 130, no 1, 198910.1016/0043-1648(89)90238-X
  14. 14. Ochoński W.: High technology of sealing solved by ferrofluids, Industrial Lubrication and Tribology, vol. 45, no 4, 1993.10.1108/eb053429
  15. 15. Ochoński W.: New designs of magnetic fluid exclusion seals for rolling bearings, Industrial Lubrication and Tribology, vol. 57, no 3, 2005.10.1108/00368790510595075
  16. 16. Patent PL, Int.Cl. F16J15/43, no 202542, Centrifugal magnetic fluid shaft seal (in Polish).
  17. 17. Patent application PL, no P-420053 Centrifugal seal with magnetic fluid for high-speed shaft (in Polish).
  18. 18. Patent PL, Int.Cl. F16J15/453, no 174460, Ferromagnetic fluid centrifugal seal (in Polish).
  19. 19. Patent PL, Int.Cl.F16J15/53, no 202306, Centrifugal magnetic fluid seal for high -speed shaft (in Polish).
  20. 20. Patent USA, Int.Cl. F16J15/42, no 4455026, Vee-shaped magnetic/centrifugal seal and method of operation.
  21. 21. Patent USA, Int.Cl. F16J15/42, no 4200296, Ferrofluid centrifugal seal.
  22. 22. Patent PL, Int.Cl. F16J15/453, no 218345, Centrifugal seal with magnetic fluid (in Polish).
  23. 23. Patent PL, Int.Cl.F16J15/42, no 220279, Centrifugal seal with magnetic fluid (in Polish).
  24. 24. Patent application PL, no P-418800, Centrifugal seal with magnetic liquid for a high-speed shaft (in Polish).
  25. 25. Patent application PL, no P-423513, Centrifugal seal with magnetic fluid for rotating shaft (in Polish).
  26. 26. Patent PL, Int.Cl.F16J15-53, no 206282, Compact, centrifugal seal with magnetic fluid (in Polish).
  27. 27. Patent application PL, no P-419854, Hybrid protective seal with magnetic fluid for rotating bearing (in Polish).
  28. 28. Patent application PL, no P-418797, Feedthrough of high-speed shaft with centrifugal magnetic fluid seal (in Polish).
  29. 29. Patent PL, Int.Cl.F16J15/40, no 1`163174, Multistage ferromagnetic fluid seal (in Polish).
  30. 30. Patent application PL, no P-423713, Hybrid seal with magnetic fluid, especially for high-speed shaft (in Polish).
  31. 31. Y. Mitamura and C. A. Durst, “Miniature magnetic fluid seal working in liquid environments,” J. Magn. Magn. Mater., 2017.10.1016/j.jmmm.2016.09.032
  32. 32. M. Cong and H. Shi, “A study of magnetic fluid rotary seals for wafer handling robot,” in 15th International Conference on Mechatronics and Machine Vision in Practice, M2VIP’08, 2008.10.1109/MMVIP.2008.4749545
  33. 33. D. Li, H. Xu, X. He, and H. Lan, “Theoretical and experimental study on the magnetic fluid seal of reciprocating shaft,” in Journal of Magnetism and Magnetic Materials, 2005.
  34. 34. M. Szczech and W. Horak, “Tightness testing of rotary ferromagnetic fluid seal working in water environment,” Ind. Lubr. Tribol., 2015.10.1108/ILT-02-2015-0014
  35. 35. H. Urreta, G. Aguirre, P. Kuzhir, and L. N. Lopez de Lacalle, “Seals Based on Magnetic Fluids for High Precision Spindles of Machine Tools,” Int. J. Precis. Eng. Manuf., 2018.10.1007/s12541-018-0060-9
  36. 36. Y. Mitamura, S. Arioka, D. Sakota, K. Sekine, and M. Azegami, “Application of a magnetic fluid seal to rotary blood pumps,” J. Phys. Condens. Matter, 2008.10.1088/0953-8984/20/20/20414521694274
  37. 37. Y. Mitamura, T. Yano, W. Nakamura, and E. Okamoto, “A magnetic fluid seal for rotary blood pumps: Behaviors of magnetic fluids in a magnetic fluid sealwith a shield,” Magnetohydrodynamics, 2013.10.22364/mhd.49.3-4.51
  38. 38. T. Dimond, R. D. Rockwell, P. N. Sheth, and P. E. Allaire, “A New Fluid Film Bearing Test Rig for Oil and Water Bearings,” Proc. ASME Turbo Expo 2008 Power Land, Sea Air, 2008.10.1115/GT2008-50654
  39. 39. K. Sekine, Y. Mitamura, S. Murabayashi, I. Nishimura, R. Yozu, and D. W. Kim, “Development of a Magnetic Fluid Shaft Seal for an Axial-Flow Blood Pump,” in Artificial Organs, 2003.10.1046/j.1525-1594.2003.00035.x14616532
  40. 40. M. S. Krakov and I. V. Nikiforov, “Effect of diffusion of magnetic particles on the parameters of the magnetic fluid seal: A numerical simulation,” Magnetohydrodynamics, 2014.
  41. 41. Y. Mitamura et al., “Sealing Performance of a Magnetic Fluid Seal for Rotary Blood Pumps,” Artif. Organs, 2009.10.1111/j.1525-1594.2009.00899.x19775271
  42. 42. S. Chen and D. Li, “Influence of particle size distribution of magnetic fluid on the resistance torque of magnetic fluid seal,” J. Magn., 2017.10.4283/JMAG.2017.22.4.605
  43. 43. A. Radionov, A. Podoltsev, and A. Zahorulko, “Finite-element analysis of magnetic field and the flow of magnetic fluid in the core of magnetic-fluid seal for rotational shaft,” in Procedia Engineering, 2012.10.1016/j.proeng.2012.07.038
  44. 44. Y. Mizutani, H. Sawano, H. Yoshioka, and H. Shinno, “Magnetic fluid seal for linear motion system with gravity compensator,” in Procedia CIRP, 2015.10.1016/j.procir.2015.06.088
  45. 45. M. S. Krakov and I. V. Nikiforov, “Regarding the influence of heating and the Soret effect on a magnetic fluid seal,” J. Magn. Magn. Mater., 2017.10.1016/j.jmmm.2016.07.054
  46. 46. Z. Meng, Z. Jibin, and H. Jianhui, “An analysis on the magnetic fluid seal capacity,” J. Magn. Magn. Mater., 2006.10.1016/j.jmmm.2006.01.060
  47. 47. J. Salwiński and W. Horak, “Measurement of Normal Force in Magnetorheological and Ferrofluid Lubricated Bearings,” Key Eng. Mater., 2011.10.4028/www.scientific.net/KEM.490.25
  48. 48. D. A. Bompos and P. G. Nikolakopoulos, “Experimental and Analytical Investigations of Dynamic Characteristics of Magnetorheological and Nanomagnetorheological Fluid Film Journal Bearing,” J. Vib. Acoust., 2016.10.1115/1.4032900
  49. 49. I. F. Santos, “On the future of controllable fluid film bearings,” in 9th EDF/Pprime (LMS) Poitiers Workshop, 2010.
  50. 50. S. E. Mushi, Z. Lin, and P. E. Allaire, “Design, construction, and modeling of a flexible rotor active magnetic bearing test rig,” IEEE/ASME Trans. Mechatronics, 2012.10.1109/TMECH.2011.2160456
  51. 51. H. Montazeri, “Numerical analysis of hydrodynamic journal bearings lubricated with ferrofluid,” Proc. Inst. Mech. Eng. Part J J. Eng. Tribol., 2008.10.1243/13506501JET314
  52. 52. D. A. Bompos and P. G. Nikolakopoulos, “Journal Bearing Stiffness and Damping Coefficients Using Nanomagnetorheological Fluids and Stability Analysis,” J. Tribol., 2014.10.1115/1.4027748
  53. 53. Z. Huang, J. Fang, X. Liu, and B. Han, “Loss Calculation and Thermal Analysis of Rotors Supported by Active Magnetic Bearings for High-Speed Permanent-Magnet Electrical Machines,” IEEE Trans. Ind. Electron., 2016.10.1109/TIE.2015.2500188
  54. 54. M. L. Chan et al., “Design and characterization of MEMS micromotor supported on low friction liquid bearing,” Sensors Actuators, A Phys., 2012.
  55. 55. X. Song and H. G. Wood, “Application of CFX to Implantable Rotary Blood Pumps Suspended by Magnetic Bearings,” in International ANSYS Conference, 2004.
  56. 56. D. A. Bompos and P. G. Nikolakopoulos, “CFD simulation of magnetorheological fluid journal bearings,” Simul. Model. Pract. Theory, 2011.10.1016/j.simpat.2011.01.001
  57. 57. S. Jahanmir et al., “Design of a small centrifugal blood pump with magnetic bearings,” Artif. Organs, 2009.10.1111/j.1525-1594.2009.00883.x19775263
  58. 58. W. Ochoński, “Sliding bearings lubricated with magnetic fluids,” Industrial Lubrication and Tribology. 2007.10.1108/00368790710820856
  59. 59. T. M. Lim, S. Cheng, and L. P. Chua, “Parameter estimation and actuator characteristics of hybrid magnetic bearings for axial flow blood pump applications,” Artificial Organs. 2009.
DOI: https://doi.org/10.2478/pomr-2019-0023 | Journal eISSN: 2083-7429 | Journal ISSN: 1233-2585
Language: English
Page range: 33 - 46
Published on: Jul 12, 2019
Published by: Gdansk University of Technology
In partnership with: Paradigm Publishing Services
Publication frequency: 4 times per year

© 2019 Leszek Matuszewski, published by Gdansk University of Technology
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.