Have a personal or library account? Click to login
Model of a Ducted Axial-Flow Hydrokinetic Turbine – Results of Experimental and Numerical Examination Cover

Model of a Ducted Axial-Flow Hydrokinetic Turbine – Results of Experimental and Numerical Examination

Open Access
|Oct 2018

References

  1. 1. Abe K., Nishida M.; Sakurai A.; Ohya Y.; Kihara H.; Wada E.; Sato K., Experimental and numerical investigations of flow fields behind a small wind turbine with a flanged diffuser, Journal of Wind Engineering Industrial Aerodynamics, v. 93 (2005) p. 951-970.10.1016/j.jweia.2005.09.003
  2. 2. Bahaj A.S., Molland J.R., Chaplin J.R., Batten W.M.J., Power and thrust measurements of marine current turbines under various hydrodynamic flow conditions in a cavitation tunnel and towing tank, Renewable Energy 32 (2007) 407-426.10.1016/j.renene.2006.01.012
  3. 3. Bavanish B., Thyagarajan., Optimization of power coefficient on a horizontal axis wind turbine ising bem theory, Renewable and Sustainable Energy Reviews 26 (2013) 169-182.10.1016/j.rser.2013.05.009
  4. 4. Clarke J.A., Connor G., Grant A.D., Johnstone C.M., Design and testing of a contra-rotating tidal current turbine, Energy Systems Research Unit, University of Strathclyde, Glasgow UK.
  5. 5. Clarke J.A., Connor G., Grant A.D., Johnstone C.M., Mackenzie D., Development of a Contra-Rotating Tidal Current Turbine and Analysis of Performance, Energy Systems Research Unit, University of Strathclyde, Glasgow UK.
  6. 6. DØssing M., Vortex Lattice Modelling of Winglets on Wind Turbines Blades, Wind Energy Department – RisØ & Department of Mechanical Engineering – DTU, Denmark 2007, ISBN 978-87-550-3633-8.
  7. 7. Durand W., F., “Aerodynamic Theory”, Dover Publication, INC., New York.
  8. 8. Glauert H., „Airplane propellers”, In Durand W.F. (ed.) Aerodynamics Theory, 4th edn., Springer, Berlin 1935.10.1007/978-3-642-91487-4_3
  9. 9. Góralczyk A., Extending the vortex lattice method by the procedure calculating the shape of the vortex wake downstream of the rotor (in Polish), Scientific Report of IF-FM PAS, No. 662/2012.
  10. 10. Góralczyk A., Numerical algorithm of the procedure taking into account the effect of walls bounding the measuring space of the cavitation tunnel on the performance of hydrokinetic turbines (in Polish), Scientific Report of IF-FM PAS, No. 1012/2014.
  11. 11. Góralczyk A., Chaja P., Preliminary laboratory tests and analysis of results oriented on verification of the developed software (in Polish), Scientific Report of IF-FM PAS, No. 759/09.
  12. 12. Góralczyk A., Chaja P., Adamkowski A., Method for Calculating Performance Characteristics of Hydrokinetic Turbines, TASK QUARTERLY 15 No 1, 1001–1015, 2011.
  13. 13. Gumułka S., Knap T. Strzelczyk P., Szczerba Z., „Wind Power Engineering” (in Polish), Uczelniane Wydawnictwo Naukowo-Dydaktyczne, Krakow 2006, ISBN 83-89388-79-0.
  14. 14. Hankin D., Graham J. M. R., An unsteady vortex lattice methods model of a horizontal axis wind turbine operating in an upstream rotor wake, Journal of Physics: Conference Series 555 (2014).10.1088/1742-6596/555/1/012049
  15. 15. Hantoro R., Utama I.K.A.P., Sulisetyono E., Sulisetyono A., An Experimental Investigations of Variable-Pitch Vertical-Axial Ocean Current Turbines, ITB J. Eng. Sci., Vol. 43, No. 1, 2011, 27-40.10.5614/itbj.eng.sci.2011.43.1.3
  16. 16. Javaherchi T., Stelzenmuller N., Aliseda A., Experymental and Numerical Analysis of the Doe Refernce Model 1 Horizontal Axis Hydrokinetic Turbines, Proceedings of the 1st Marine Energy Technology Symposium METS2013, Washington.
  17. 17. Kaniecki M., Hydrodynamic analysis of propeller pump operation using the surface singularity distribution method (in Polish). Ph.D. thesis, IF-FM PAS, Gdansk 2004.
  18. 18. Khan M.J., Bhuyan G., Iqubal M.T., Quaicoe J.E., Hydrokinetic energy conversion systems and assessment of horizontal and vertical axis turbines for river and tidal applications: A technology status review, Applied Energy 86 1823-1835, 2009.10.1016/j.apenergy.2009.02.017
  19. 19. Kirke B., Developments in ducted woter current turbines, Tidal Paper 2006
  20. 20. Koh W.X.M., Ng E.Y.K., „Effects of Reynolds number and different tip loss models on the accuracy of BEM applied to tidal turbines as compared to experiments”, Ocean Engineering 111 (2016) 104-115.10.1016/j.oceaneng.2015.10.042
  21. 21. Koyama K., Comparative calculations of Propellers by Surface Panel Method, Ship Research Institute, September 1993.
  22. 22. Lewis R. I., Vortex Element Methods for Fluid Dynamic Analysis of Engineering Systems, Cambridge University Press 1991.10.1017/CBO9780511529542
  23. 23. Liu S., Janajreh I., „Development and application of an improved blade element momentum method model on horizontal axis wind turbines”, International Journal of Energy and Environmental Engineering 2012.10.1186/2251-6832-3-30
  24. 24. Logo L.I., Ponta F.L., Chen L., Advances and trends in hydrokinetic turbine systems, Energy for Sustainable Development 14 (2010) 287-296.10.1016/j.esd.2010.09.004
  25. 25. McNae D. M., Unstedy Hydrodynamics of Tidal Stream Turbines, Department of Aeronautics Imperial College London, 2013.
  26. 26. Pietkiewicz P., Miąskowski W., Nalepa K., Kowalczuk K., Analysing velocity distribution in the wind turbine diffuser (in Polish), Agenda Wydawnicza SIMP, Mechanik, 7/2015, pp. 655-662.10.17814/mechanik.2015.7.282
  27. 27. Rankine W.J.M., „On The Mechanical Principles of The Action of Propellers”, Trans Inst Naval Architects, Britisch, 1865;6(13).
  28. 28. Rohatyński R. Theoretical foundations for modelling flows past solid bodies using the method of singularities (in Polish), Prace Naukowe Instytutu Konstrukcji I Eksploatacji Maszyn Politechniki Wrocławskiej, No. 59, 1993.
  29. 29. Rourke F., Boyle F., Reynolds A., Tidal energy update 2009, Applied Energy 87 (2010) 398-409.10.1016/j.apenergy.2009.08.014
  30. 30. Shahsavarifard M., Bibeau E.L., Birjandi A.H., Performance gain of horizontal axis hydrokinetic turbines using shroud, MTS 2013.
  31. 31. da Silva P. A. S. F., Shinomiya L. D., de Oliveira T. F., Vaz J. R. P., Mesquita A. L. A., Junior A. C. P. B., Design of Hydrokinetic Turbine Blades Considering Cavitation, The 7th International Conference on Applied Energy – ICAE2015, Energy Procedia 75 (2015) 277-282.10.1016/j.egypro.2015.07.343
  32. 32. Xu W., Numerical Techniques for the Design and Prediction of Performance of Marine Turbines and Propellers, Ocean Engineering Group, Report no. 10-06, August 2010.
DOI: https://doi.org/10.2478/pomr-2018-0102 | Journal eISSN: 2083-7429 | Journal ISSN: 1233-2585
Language: English
Page range: 113 - 122
Published on: Oct 23, 2018
Published by: Gdansk University of Technology
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2018 Adam Góralczyk, Adam Adamkowski, published by Gdansk University of Technology
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.