Have a personal or library account? Click to login
Thermo-Economic Analysis and Environmental Aspects of Absorption Refrigeration Unit Operation Onboard Marine Vehicles: Ro- Pax Vessel Case Study Cover

Thermo-Economic Analysis and Environmental Aspects of Absorption Refrigeration Unit Operation Onboard Marine Vehicles: Ro- Pax Vessel Case Study

By: N R Ammar and  I S Sediek  
Open Access
|Oct 2018

References

  1. 1. IMO, Third IMO GHG study 2014. Executive summary and final report, MEPC 67/6/INF.3. 2014: International Maritime Organization, London.
  2. 2. Peters, G.P., et al., The challenge to keep global warming below 2 [deg]C. Nature Clim. Change, 2013. 3(1): p. 4-6.10.1038/nclimate1783
  3. 3. Boden, T.A., R.J. Andres, and G. Marland, in Global, Regional, and National Fossil-Fuel CO2 Emissions, Period of Record 1751–20102013, Carbon Dioxide Information Analysis Center (CDIA C), U.S. department of energy.
  4. 4. Salvatore, A., Ocean sustainability in the 21 century. 2015: ISBN 978-1-107-10013-8, Cambridge University press, United Kingdom..
  5. 5. EC. European Union (EU) legislations to control fluorinated greenhouse gases (F-gases). 2017. Available: https://ec.europa.eu/clima/policies/f-gas/legislation_en (Accessed 5 July 2017).
  6. 6. Ammar, N.R. and I.S. Seddiek, Eco-environmental analysis of ship emission control methods: Case study RO-RO cargo vessel. Ocean Engineering, 2017. 137: p. 166 - 173.10.1016/j.oceaneng.2017.03.052
  7. 7. El Gohary, M.M., N.R. Ammar, and I.S. Seddiek, Steam and SOFC based reforming options of PEM fuel cells for marine applications. Brodogradnja, 2015. 66(2)(2): p. 61-76.
  8. 8. Seddiek, I.S., An overview: Environmental and economic strategies for improving quality of ships exhaust gases. International Journal of Maritime Engineering, 2015. 157: p. 53-64.10.3940/rina.ijme.2015.a1.311
  9. 9. Salmi, W., et al., Using waste heat of ship as energy source for an absorption refrigeration system. Applied Thermal Engineering, 2017. 115: p. 501-516.10.1016/j.applthermaleng.2016.12.131
  10. 10. Cao, T., et al., Performance investigation of engine waste heat powered absorption cycle cooling system for shipboard applications. Applied Thermal Engineering, 2015. 90: p. 820-830.10.1016/j.applthermaleng.2015.07.070
  11. 11. Eyring, V., et al., Emissions from international shipping: 2. Impact of future technologies on scenarios until 2050. Journal of Geophysical Research: Atmospheres, 2005. 110(D17): p. D17306, doi:10.1029/2004JD005620.10.1029/2004JD005620
  12. 12. Ouadha, A. and Y. El-Gotni, Integration of an ammonia-water absorption refrigeration system with a marine diesel engine: A thermodynamic study. Procedia Computer Science, 2013. 19: p. 754-761.10.1016/j.procs.2013.06.099
  13. 13. Seddiek, I.S., M. Mosleh, and A.A. Banawan, Thermo-economic approach for absorption air condition onboard high-speed crafts. International Journal of Naval Architecture and Ocean Engineering, 2012. 4(4): p. 460-476.10.2478/IJNAOE-2013-0111
  14. 14. Riffat, S.B. and G. Qiu, Comparative investigation of thermoelectric air-conditioners versus vapour compression and absorption air-conditioners. Applied Thermal Engineering, 2004. 24(14–15): p. 1979-1993.10.1016/j.applthermaleng.2004.02.010
  15. 15. IMO, Prevention of air pollution from ships. Second IMO GHG Study, MEPC 59, 2009.
  16. 16. Táboas, F., M. Bourouis, and M. Vallès, Analysis of ammonia/water and ammonia/salt mixture absorption cycles for refrigeration purposes in fishing ships. Applied Thermal Engineering, 2014. 66(1–2): p. 603-611.10.1016/j.applthermaleng.2014.02.065
  17. 17. Austral. AUTO EXPRESS 88. 2008. Available: http://www.austal.com/sites/default/files/data-sheet/Auto_Express_88_340_and_341.pdf (Accessed 15 June 2017).
  18. 18. Seddiek, I.S., Application of fuel-saving strategies onboard high-speed passenger ships. Journal of Marine Science and Technology, 2016. 21(3): p. 493-500.10.1007/s00773-016-0371-4
  19. 19. MTU. Marine Diesel Engines 20V 8000 M71R/71/71L for Fast Vessels with High Load Factors (1B) 2017. Available: https://mtu-online-shop.com/media/files_public/c9c121a2e1f6df696c45fdbe3ca03489/3231631_MTU_Marine_spec_20V8000M71-R-L_1B_1_14.pdf (Accessed 16 April 2017.
  20. 20. Carrier. Single-Effect Hot Water-Fired Absorption Chillers (16LJ 11-53). 2016. Available: https://climamarket.bg/wp-content/uploads/Tech-Spec-Carrier-16LJ.pdf (Accessed 10 May 2017).
  21. 21. Srikhirin, P., S. Aphornratana, and S. Chungpaibulpatana, A review of absorption refrigeration technologies. Renewable and Sustainable Energy Reviews, 2001. 5(4): p. 343-372.10.1016/S1364-0321(01)00003-X
  22. 22. Yan, X., et al., A novel absorption refrigeration cycle for heat sources with large temperature change. Applied Thermal Engineering, 2013. 52(1)(1): p. 179-186.10.1016/j.applthermaleng.2012.11.041
  23. 23. Hong, D., et al., A novel absorption refrigeration cycle. Applied Thermal Engineering, 2010. 30 (14-15): p. 2045-2050.10.1016/j.applthermaleng.2010.05.010
  24. 24. Onan, C., D.B. Ozkan, and S. Erdem, Exergy analysis of a solar assisted absorption cooling system on an hourly basis in villa applications. 2010. 35 (12): p. 5277 - 5285.10.1016/j.energy.2010.07.037
  25. 25. Adewusi, S.A. and S.M. Zubair, Second law based thermodynamic analysis of ammonia–water absorption systems. Energy Conversion and Management, 2004. 45(15-16): p. 2355 - 2369.10.1016/j.enconman.2003.11.020
  26. 26. ASHRAE, Handbook of fundamentals, 2009, Atlanta: ASHRAE.
  27. 27. Florides, G.A., et al., Design and construction of a LiBr–water absorption machine. Energy Conversion and Management, 2003. 44(15): p. 2483-2508.10.1016/S0196-8904(03)00006-2
  28. 28. Pátek, J. and J. Klomfar, A computationally effective formulation of the thermodynamic properties of LiBr–H2O solutions from 273 to 500 K over full composition range. International Journal of Refrigeration, 2006. 29(4): p. 566-578.10.1016/j.ijrefrig.2005.10.007
  29. 29. Pátek, J. and J. Klomfar, A simple formulation for thermodynamic properties of steam from 273 to 523 K, explicit in temperature and pressure. International Journal of Refrigeration, 2009. 32(5): p. 1123-1125.10.1016/j.ijrefrig.2008.12.010
  30. 30. ICF. Towboat emission reduction feasibility study. U.S. Environmental Protection Agency. 2009.
  31. 31. Hunt, E. and B. Butman. Marine engineering economics and cost analysis. Cornell Maritime Press, Centreville, Maryland. 1995.
  32. 32. Wonchala, J., M. Hazledine, and K. Goni Boulama, Solution procedure and performance evaluation for a water–LiBr absorption refrigeration machine. Energy, 2014. 65: p. 272-284.10.1016/j.energy.2013.11.087
  33. 33. Talukdar, K. and T.K. Gogoi, Exergy analysis of a combined vapor power cycle and boiler flue gas driven double effect water–LiBr absorption refrigeration system. Energy Conversion and Management, 2016. 108: p. 468-477.10.1016/j.enconman.2015.11.020
  34. 34. Gogoi, T.K. and K. Talukdar, Thermodynamic analysis of a combined reheat regenerative thermal power plant and water–LiBr vapor absorption refrigeration system. Energy Conversion and Management, 2014. 78: p. 595-610.10.1016/j.enconman.2013.11.035
  35. 35. Mortazavi, A., et al., Enhancement of APCI cycle efficiency with absorption chillers. Energy, 2010. 35(9): p. 3877-3882.10.1016/j.energy.2010.05.043
  36. 36. Palacín, F., C. Monné, and S. Alonso, Improvement of an existing solar powered absorption cooling system by means of dynamic simulation and experimental diagnosis. Energy, 2011. 36(7): p. 4109-4118.10.1016/j.energy.2011.04.035
  37. 37. Bunkerworld. Fuel prices. 2018. Available: http://www.bunkerworld.com/prices/ (Accessed 2 Sep. 2018).10.1016/j.focat.2018.09.005
  38. 38. Banawan, A.A., M.M. El Gohary, and I.S. Sadek, Environmental and economic benefits of changing from marine diesel oil to natural-gas fuel for short-voyage high-power passenger ships. Proceedings of the Institution of Mechanical Engineers Part M-Journal of Engineering for the Maritime Environment, 2010. 224(M2): p. 103-113.10.1243/14750902JEME181
  39. 39. ICF. Current methodologies in preparing mobile source port-related emission inventories. U.S. Environmental Protection Agency. 2009.
  40. 40. Gupta, A., et al., Economic and thermodynamic study of different cooling options: A review. Renewable and Sustainable Energy Reviews, 2016. 62: p. 164-194.10.1016/j.rser.2016.04.035
  41. 41. Mikelis, N.E., A statistical overview of ship recycling. J. Marit. Affairs, 2008. 7(1): p. 227–239.10.1007/BF03195133
DOI: https://doi.org/10.2478/pomr-2018-0100 | Journal eISSN: 2083-7429 | Journal ISSN: 1233-2585
Language: English
Page range: 94 - 103
Published on: Oct 23, 2018
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2018 N R Ammar, I S Sediek, published by Gdansk University of Technology
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.