Have a personal or library account? Click to login
Research on SDG Fault Diagnosis of Ocean Shipping Boiler System Based on Fuzzy Granular Computing Under Data Fusion Cover

Research on SDG Fault Diagnosis of Ocean Shipping Boiler System Based on Fuzzy Granular Computing Under Data Fusion

By: Ying Zhu and  Liang Geng  
Open Access
|Sep 2018

References

  1. 1. Ciabattoni, L., Ferracuti, F., Freddi, A. and Monteriu, A.: Statistical spectral analysis for fault diagnosis of rotating machines, Ieee Transactions on Industrial Electronics, Vol. 65, no. 5, pp. 4301-4310, 2018.10.1109/TIE.2017.2762623
  2. 2. He, W., He, Y., Luo, Q. and Zhang, C.: Fault diagnosis for analog circuits utilizing time-frequency features and improved vvrkfa, Measurement Science and Technology, Vol. 29, no. 4, pp. 1-4, 2018.10.1088/1361-6501/aaa33a
  3. 3. Jack, Q., John, E. and Pan, Y.: Multi-scale stochastic resonance spectrogram for fault diagnosis of rolling element bearings, Journal of Sound and Vibration, Vol. 420, no. 2, pp. 174-184, 2018.10.1016/j.jsv.2018.01.001
  4. 4. Khan, S., Gani, A., Wahab, A.W.A. and Singh, P.K.: Feature selection of denial-of-service attacks using entropy and granular computing, Arabian Journal for Science and Engineering, Vol. 43, no. 2, pp. 499-508, 2018.10.1007/s13369-017-2634-8
  5. 5. Li, Y., Li, G., Yang, Y., Liang, X. and Xu, M.: A fault diagnosis scheme for planetary gearboxes using adaptive multi-scale morphology filter and modified hierarchical permutation entropy, Mechanical Systems and Signal Processing, Vol. 105, no. 4, pp. 319-337, 2018.10.1016/j.ymssp.2017.12.008
  6. 6. Wang, Y., Zheng, Y., Fang, H.-J., Wang, Y.-W.: ARMAX model based run-to-run fault diagnosis approach for batch manufacturing process with metrology delay. International Journal of Production Research, 2014, 52(10): 2915–2930.10.1080/00207543.2013.857056
  7. 7. Zheng,Y., Fang,H.-J., Wang,H.-O.: Takagi-Sugeno fuzzy model-based fault detection for networked control systems with markov delays. IEEE Transactions on System, Man and Cybernetics, Part B: Cybernetics, 2006, 36(3): 924-929.10.1109/TSMCB.2005.861879
  8. 8. Liu, H., Li, J., Guo, H. and Liu, C.: Interval analysis-based hyperbox granular computing classification algorithms, Iranian Journal of Fuzzy Systems, Vol. 14, no. 5, pp. 139-156, 2017.
  9. 9. Lung, J., Chen, Q., Mao, N. and Jack, P.: Combining granular computing technique with deep learning for service planning under social manufacturing contexts, Knowledge-Based Systems, Vol. 143, no., pp. 295-306, 2018.10.1016/j.knosys.2017.07.023
  10. 10. Micheal, J., Zi, Y., Chen, J., Zhou, Z. and Wang, B.: Liftingnet: A novel deep learning network with layerwise feature learning from noisy mechanical data for fault classification, Ieee Transactions on Industrial Electronics, Vol. 65, no. 6, pp. 4973-4982, 2018.10.1109/TIE.2017.2767540
  11. 11. Pecht, M., Zhao, M., Kang, M. and Tang, B.: Deep residual networks with dynamically weighted wavelet coefficients for fault diagnosis of planetary gearboxes, Ieee Transactions on Industrial Electronics, Vol. 65, no. 5, pp. 4290-4300, 2018.10.1109/TIE.2017.2762639
  12. 12. Sheikhian, H., Delavar, M.R. and Stein, A.: A gis-based multi-criteria seismic vulnerability assessment using the integration of granular computing rule extraction and artificial neural networks, Transactions in Gis, Vol. 21, no. 6, pp. 1237-1259, 2017.10.1111/tgis.12274
  13. 13. Wang, J., Cheng, F., Qiao, W. and Qu, L.: Multiscale filtering reconstruction for wind turbine gearbox fault diagnosis under varying-speed and noisy conditions, Ieee Transactions on Industrial Electronics, Vol. 65, no. 5, pp. 4268-4278, 2018.10.1109/TIE.2017.2767520
  14. 14. Wang, L., Liu, Z., Miao, Q. and Zhang, X.: Complete ensemble local mean decomposition with adaptive noise and its application to fault diagnosis for rolling bearings, Mechanical Systems and Signal Processing, Vol. 106, no. 5, pp. 24-39, 2018.10.1016/j.ymssp.2017.12.031
  15. 15. Wang, M., Hu, N.-Q. and Qin, G.-J.: A method for rule extraction based on granular computing: Application in the fault diagnosis of a helicopter transmission system, Journal of Intelligent & Robotic Systems, Vol. 71, no. 3-4, pp. 445-455, 2013.10.1007/s10846-012-9793-3
  16. 16. Wang, Q. and Gong, Z.: An application of fuzzy hypergraphs and hypergraphs in granular computing, Information Sciences, Vol. 429, no., pp. 296-314, 2018.10.1016/j.ins.2017.11.024
  17. 17. Wu, H., Liu, Y., Yan, P., Fang, G. and Zhong, J.: A frequent itemset mining algorithm based on composite granular computing, Journal of Computational Methods in Sciences and Engineering, Vol. 18, no. 1, pp. 247-257, 2018.10.3233/JCM-180786
  18. 18. Xiahou, K.S. and Wu, Q.H.: Fault-tolerant control of doubly-fed induction generators under voltage and current sensor faults, International Journal of Electrical Power & Energy Systems, Vol. 98, no. 6, pp. 48-61, 2018.10.1016/j.ijepes.2017.11.028
  19. 19. Yang, S.-C., Hsu, Y.-L., Chou, P.-H., Chen, G.-R. and Jian, D.-R.: Online open-phase fault detection for permanent magnet machines with low fault harmonic magnitudes, Ieee Transactions on Industrial Electronics, Vol. 65, no. 5, pp. 4039-4050, 2018.10.1109/TIE.2017.2758752
  20. 20. Yu, Y., Zhao, Y., Wang, B., Huang, X. and Xu, D.: Current sensor fault diagnosis and tolerant control for vsi-based induction motor drives, Ieee Transactions on Power Electronics, Vol. 33, no. 5, pp. 4238-4248, 2018.10.1109/TPEL.2017.2713482
  21. 21. Zheng, B., Li, Y.-F. and Huang, H.-Z.: Intelligent fault recognition strategy based on adaptive optimized multiple centers, Mechanical Systems and Signal Processing, Vol. 106, no. 7, pp. 526-536, 2018.10.1016/j.ymssp.2017.12.026
DOI: https://doi.org/10.2478/pomr-2018-0079 | Journal eISSN: 2083-7429 | Journal ISSN: 1233-2585
Language: English
Page range: 92 - 97
Published on: Sep 10, 2018
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2018 Ying Zhu, Liang Geng, published by Gdansk University of Technology
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.