1. Zhu, R.S., Chen, Z.L., Wang, X.L., Chao, L.: Numerical study on cavitation characteristics of CAP1400 nuclear main coolant pump. Journal of Drainage and Irrigation Machinery Engineering. Vol. 34, no. 6, pp. 490-495, 2016.
7. Andersen, A., Mørch, K. A.: Cavitation nuclei in water exposed to transient pressures. Journal of Fluid Mechanics. no. 771, pp. 424-448, 2015.10.1017/jfm.2015.185
9. Yasuoka, K., Matsumoto, M.: Molecular dynamics of homogeneous nucleation in the vapor phase. I. Lennard-Jones fluid. Journal of Chemical Physics. Vol. 109, no. 19, pp. 8451-8462, 1998.10.1063/1.477509
10. Wu, Y. W., Chin, P.: A molecular dynamics simulation of bubble nucleation in homogeneous liquid under heating with constant mean negative pressure. Nanoscale and Microscale Thermophysical Engineering. Vol. 7, no. 2, pp. 137-151, 2003.10.1080/10893950390203323
12. Baidakov, V. G., Bobrov, K. S.: Spontaneous cavitation in a Lennard-Jones liquid at negative pressures. Journal of Chemical Physics. Vol. 140, no. 18, pp. 184506, 2014.10.1063/1.4874644
13. Baidakov, V. G.: Spontaneous cavitation in a Lennard-Jones liquid: Molecular dynamics simulation and the van der Waals-Cahn-Hilliard gradient theory. Journal of Chemical Physics. Vol. 144, no. 7, pp. 074502, 2016.10.1063/1.4941689
14. Ang´elil, R., Diemand, J., Tanaka, K. K., Tanaka, H.: Bubble evolution and properties in homogeneous nucleation simulations. Physical Review E Statistical Nonlinear & Soft Matter Physics. Vol. 90, no. 6, pp. 063301, 2014.10.1103/PhysRevE.90.063301
15. Maruyama, S., Kimura, T.: A Molecular Dynamics Simulation of Bubble Nucleation on Solid Surface. Transactions of the Japan Society of Mechanical Engineers Part B. Vol. 65, no. 638, pp. 3461-3467, 1999.10.1299/kikaib.65.3461
16. Tatsuto, K., Shigeo, M.: Molecular dynamics simulation of heterogeneous nucleation of a liquid droplet on a solid surface. Nanoscale and Microscale Thermophysical Engineering. Vol. 6, no. 1, pp. 3-13, 2002.10.1080/108939502753428202
17. Tsuda, S. I., Shu, T., Matsumoto, Y.: A study on the growth of cavitation bubble nuclei using large-scale molecular dynamics simulations. Fluid Dynamics Research. Vol. 40, no. 7-8, pp. 606-615, 2008.10.1016/j.fluiddyn.2008.02.002
18. Sasikumar, K., Keblinski, P.: Molecular dynamics investigation of nanoscale cavitation dynamics. Journal of Chemical Physics. Vol. 141, no. 23, pp. 12B648_1-790, 2014.10.1063/1.490378325527949
19. Yamamoto, T., Ohnishi, S.: Molecular dynamics study on helium nanobubbles in water. Physical Chemistry Chemical Physics Pccp. Vol. 13, no. 36, pp. 16142, 2011.10.1039/c1cp22018g
20. Mao, Y. J., Zhang, Y. W.: Nonequilibrium molecular dynamics simulation of nanobubble growth and annihilation in liquid water. Nanosc Microsc Therm. Vol. 17, no. 2, pp. 79-91, 2013.10.1080/15567265.2012.760692
21. Matsumoto, M.: Surface Tension and Stability of a Nanobubble in Water: Molecular Simulation. Journal of Fluid Science & Technology. Vol. 3, no. 8, pp. 922-929, 2008.10.1299/jfst.3.922