Have a personal or library account? Click to login

The Cavitation Nuclei Transient Characteristics of Lennard-Jones Fluid in Cavitation Inception

Open Access
|Sep 2018

References

  1. 1. Zhu, R.S., Chen, Z.L., Wang, X.L., Chao, L.: Numerical study on cavitation characteristics of CAP1400 nuclear main coolant pump. Journal of Drainage and Irrigation Machinery Engineering. Vol. 34, no. 6, pp. 490-495, 2016.
  2. 2. Knapp, R.T., Daily, J.W., Hammitt, F.G.: Cavitation. Mcgraw-Hill Book Company, New York, 1970.
  3. 3. Brennen, C.E.: Cavitation and Bubble Dynamics. Oxford University Press, Oxford, 1995.10.1093/oso/9780195094091.001.0001
  4. 4. Tanaka, K.K., Tanaka, H., Angélil, R., Diemand, J.: Simple improvements to classical bubble nucleation models. Phys Rev E Stat Nonlin Soft Matter Phys. Vol. 92, no. 2, pp.022401, 2015.10.1103/PhysRevE.92.022401
  5. 5. Mørch, K. A.: Cavitation nuclei: experiments and theory. Journal of Hydrodynamics. Vol. 21, no. 2, pp. 176-189, 2009.10.1016/S1001-6058(08)60135-3
  6. 6. Mørch, K. A.: Cavitation inception from bubble nuclei. Interface Focus. Vol. 5, no. 5, pp. 20150006, 2015.10.1098/rsfs.2015.0006
  7. 7. Andersen, A., Mørch, K. A.: Cavitation nuclei in water exposed to transient pressures. Journal of Fluid Mechanics. no. 771, pp. 424-448, 2015.10.1017/jfm.2015.185
  8. 8. Kinjo, T., Matsumoto, M.: Cavitation processes and negative pressure. Fluid Phase Equilibria. Vol. 144, no. 1-2, pp. 343-350, 1998.10.1016/S0378-3812(97)00278-1
  9. 9. Yasuoka, K., Matsumoto, M.: Molecular dynamics of homogeneous nucleation in the vapor phase. I. Lennard-Jones fluid. Journal of Chemical Physics. Vol. 109, no. 19, pp. 8451-8462, 1998.10.1063/1.477509
  10. 10. Wu, Y. W., Chin, P.: A molecular dynamics simulation of bubble nucleation in homogeneous liquid under heating with constant mean negative pressure. Nanoscale and Microscale Thermophysical Engineering. Vol. 7, no. 2, pp. 137-151, 2003.10.1080/10893950390203323
  11. 11. Sekine, M., Yasuoka, K., Kinjo, T., Matsumoto, M.: Liquid– vapor nucleation simulation of Lennard-Jones fluid by molecular dynamics method. Fluid Dynamics Research. Vol. 40, no. 7, pp. 597-605, 2008.10.1016/j.fluiddyn.2007.12.012
  12. 12. Baidakov, V. G., Bobrov, K. S.: Spontaneous cavitation in a Lennard-Jones liquid at negative pressures. Journal of Chemical Physics. Vol. 140, no. 18, pp. 184506, 2014.10.1063/1.4874644
  13. 13. Baidakov, V. G.: Spontaneous cavitation in a Lennard-Jones liquid: Molecular dynamics simulation and the van der Waals-Cahn-Hilliard gradient theory. Journal of Chemical Physics. Vol. 144, no. 7, pp. 074502, 2016.10.1063/1.4941689
  14. 14. Ang´elil, R., Diemand, J., Tanaka, K. K., Tanaka, H.: Bubble evolution and properties in homogeneous nucleation simulations. Physical Review E Statistical Nonlinear & Soft Matter Physics. Vol. 90, no. 6, pp. 063301, 2014.10.1103/PhysRevE.90.063301
  15. 15. Maruyama, S., Kimura, T.: A Molecular Dynamics Simulation of Bubble Nucleation on Solid Surface. Transactions of the Japan Society of Mechanical Engineers Part B. Vol. 65, no. 638, pp. 3461-3467, 1999.10.1299/kikaib.65.3461
  16. 16. Tatsuto, K., Shigeo, M.: Molecular dynamics simulation of heterogeneous nucleation of a liquid droplet on a solid surface. Nanoscale and Microscale Thermophysical Engineering. Vol. 6, no. 1, pp. 3-13, 2002.10.1080/108939502753428202
  17. 17. Tsuda, S. I., Shu, T., Matsumoto, Y.: A study on the growth of cavitation bubble nuclei using large-scale molecular dynamics simulations. Fluid Dynamics Research. Vol. 40, no. 7-8, pp. 606-615, 2008.10.1016/j.fluiddyn.2008.02.002
  18. 18. Sasikumar, K., Keblinski, P.: Molecular dynamics investigation of nanoscale cavitation dynamics. Journal of Chemical Physics. Vol. 141, no. 23, pp. 12B648_1-790, 2014.10.1063/1.490378325527949
  19. 19. Yamamoto, T., Ohnishi, S.: Molecular dynamics study on helium nanobubbles in water. Physical Chemistry Chemical Physics Pccp. Vol. 13, no. 36, pp. 16142, 2011.10.1039/c1cp22018g
  20. 20. Mao, Y. J., Zhang, Y. W.: Nonequilibrium molecular dynamics simulation of nanobubble growth and annihilation in liquid water. Nanosc Microsc Therm. Vol. 17, no. 2, pp. 79-91, 2013.10.1080/15567265.2012.760692
  21. 21. Matsumoto, M.: Surface Tension and Stability of a Nanobubble in Water: Molecular Simulation. Journal of Fluid Science & Technology. Vol. 3, no. 8, pp. 922-929, 2008.10.1299/jfst.3.922
  22. 22. Allen, M. P., Tildesley, D. J.: Computer simulation of liquid. Oxford: Clarendon Press, 1987.
DOI: https://doi.org/10.2478/pomr-2018-0077 | Journal eISSN: 2083-7429 | Journal ISSN: 1233-2585
Language: English
Page range: 75 - 84
Published on: Sep 10, 2018
Published by: Gdansk University of Technology
In partnership with: Paradigm Publishing Services
Publication frequency: 4 times per year

© 2018 Fu Qiang, Zhang Benying, Zhao Yuanyuan, Zhu Rongsheng, Liu Gang, Li Mengyuan, published by Gdansk University of Technology
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.