Have a personal or library account? Click to login
A Framework of A Ship Domain-Based Near-Miss Detection Method Using Mamdani Neuro-Fuzzy Classification Cover

A Framework of A Ship Domain-Based Near-Miss Detection Method Using Mamdani Neuro-Fuzzy Classification

Open Access
|Jun 2018

References

  1. 1. Chai, Y., L. Jia, Z. Zhang: Mamdani Model based Adaptive Neural Fuzzy Inference System and its Application.
  2. 2. Cpałka, K.: Design of Interpretable Fuzzy Systems, Springer, 2017.10.1007/978-3-319-52881-6
  3. 3. Cpałka, K., L. Rutkowski: On Designing of Flexible Neuro-Fuzzy Systems for Classification.
  4. 4. Driankov, D., H. Hellendoorn, M. Reinfrank: An Introduction to Fuzzy Control, Springer Berlin Heidelberg, 1996.10.1007/978-3-662-03284-8
  5. 5. Goerlandt, F., J. Montewka: Maritime transportation risk analysis: Review and analysis in light of some foundational issues, Reliab. Eng. Syst. Saf. 138 (2015), pp. 115–134.10.1016/j.ress.2015.01.025
  6. 6. Hansen, M.G., T.K. Jensen, F. Ennemark: Empirical Ship Domain based on AIS Data, (2013), pp. 931–940.10.1017/S0373463313000489
  7. 7. van Iperen, E.: Classifying ship encounters to monitor traffic safety on the North Sea from AIS data, TransNav - Int. J. Mar. Navig. Saf. Sea Transp. 9 (2015), pp. 53–60.10.12716/1001.09.01.06
  8. 8. Lazarowska, A.: Multi-criteria ACO-based Algorithm for Ship’s Trajectory Planning, TransNav, Int. J. Mar. Navig. Saf. Sea Transp. 11 (2017), pp. 31–36.10.12716/1001.11.01.02
  9. 9. Lisowski, J.: Game control methods in avoidance of ships collisions, Polish Marit. Res. 19 (2012), pp. 3–10.10.2478/v10012-012-0016-4
  10. 10. Lisowski, J., A. Lazarowska: The radar data transmission to computer support system of ship safety, Solid State Phenom. 196 (2013), pp. 95–101.10.4028/www.scientific.net/SSP.196.95
  11. 11. Nowicki, R.K.: Fuzzy decision systems in issues of limited knowledge (in Polish), Akademia Oficyna Wydawnicza EXIT, 2009.
  12. 12. Pietrzykowski, Z., P. Wo, P. Borkowski: Decision Support in Collision Situations at Sea, (2017), pp. 447–464.10.1017/S0373463316000746
  13. 13. Rutkowska, D.: Neuro-Fuzzy Architectures and Hybrid Learning, Physica-Verlag HD, Heidelberg, 2002.10.1007/978-3-7908-1802-4
  14. 14. Rutkowska, D., R. Nowicki: Implication-Based Neuro-Fuzzy Architectures, Int. J. Appl. Math. Comput. Sci. 10 (2000), pp. 675–701.
  15. 15. Rutkowski, L., K. Cpalka: Flexible neuro-fuzzy systems, IEEE Trans. Neural Networks. 14 (2003), pp. 554–574.10.1109/TNN.2003.81169818238039
  16. 16. Szlapczynski, R.: A new method of planning collision avoidance manoeuvres for multi-target encounter situations, J. Navig. 61 (2008).10.1017/S0373463307004638
  17. 17. Szlapczynski, R., J. Szlapczynska: Customized crossover in evolutionary sets of safe ship trajectories, Int. J. Appl. Math. Comput. Sci. 22 (2012).10.2478/v10006-012-0074-x
  18. 18. Szłapczynska, J.: Multi-objective Weather Routing with Customised Criteria and Constraints, J. Navig. 68 (2015), pp. 338–354.10.1017/S0373463314000691
  19. 19. Szłapczyński, R., R. Smierzchalski: Supporting navigator’s decisions by visualizing ship collision risk, Polish Marit. Res. 16 (2009).10.2478/v10012-008-0015-7
  20. 20. Wang, Y., H. Chin: An Empirically-Calibrated Ship Domain as a Safety Criterion for Navigation in Confined Waters, (2015).10.1017/S0373463315000533
  21. 21. Van Westrenen, F., J. Ellerbroek: The Effect of Traffic Complexity on the Development of Near Misses on the North Sea, IEEE Trans. Syst. Man, Cybern. Syst. 47 (2017), pp. 432–440.10.1109/TSMC.2015.2503605
  22. 22. Wu, X., A.L. Mehta, V.A. Zaloom, B.N. Craig: Analysis of waterway transportation in Southeast Texas waterway based on AIS data, Ocean Eng. 121 (2016), pp. 196–209.10.1016/j.oceaneng.2016.05.012
  23. 23. Zadeh, L.A.: The Concept of a Linguistic Variable and its Application to Approximate Reasoning-I, (1975), pp. 199–249.10.1016/0020-0255(75)90036-5
  24. 24. Zhang, W., F. Goerlandt, P. Kujala, Y. Wang: An advanced method for detecting possible near miss ship collisions from AIS data, Ocean Eng. 124 (2016), pp. 141–156.10.1016/j.oceaneng.2016.07.059
  25. 25. A historical review of evolutionary learning methods for Mamdani-type fuzzy rule-based systems: Designing interpretable genetic fuzzy systems, Int. J. Approx. Reason. 52 (2011) pp. 894–913.10.1016/j.ijar.2011.03.004
DOI: https://doi.org/10.2478/pomr-2018-0017 | Journal eISSN: 2083-7429 | Journal ISSN: 1233-2585
Language: English
Page range: 14 - 21
Published on: Jun 7, 2018
Published by: Gdansk University of Technology
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2018 Rafał Szłapczyński, Tacjana Niksa-Rynkiewicz, published by Gdansk University of Technology
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.