Have a personal or library account? Click to login
Automatic Watercraft Recognition and Identification on Water Areas Covered by Video Monitoring as Extension for Sea and River Traffic Supervision Systems Cover

Automatic Watercraft Recognition and Identification on Water Areas Covered by Video Monitoring as Extension for Sea and River Traffic Supervision Systems

Open Access
|Jun 2018

References

  1. 1. IALA Recommendation V – 128 on Operational and Technical Performance Requirements for. VTS Equipment Ed. 2.0, 2005.
  2. 2. PIANC RIS Guidelines and Recommendations for River Information Systems, 2011
  3. 3. Zajac, P.: Evaluation of Automatic Identification Systems According to ISO 50001: 2011, Progress in Automation, Robotics and Measuring Techniques: Control and Automation, Book Series: Advances in Intelligent Systems and Computing vol. 350, pp: 345-355, 2015.10.1007/978-3-319-15796-2_35
  4. 4. Kubik, T.: GIS – Network solutions (in Polish), PWN, 2009
  5. 5. Stateczny, A.: Full Implementation of the River Information Services of Border and Lower Section of the Oder in Poland. Proceedings of Baltic Geodesy Congress, Gdansk, Poland, 2016.10.1109/BGC.Geomatics.2016.33
  6. 6. Wlodarczyk-Sielicka M., Wawrzyniak N.: Problem of Bathymetric Big Data Interpolation for Inland Mobile Navigation System. In: Damaševičius R., Mikašytė V. (eds) Information and Software Technologies. ICIST 2017. Communications in Computer and Information Science, vol 756, pp 611-621. Springer, Cham,10.1007/978-3-319-67642-5_51
  7. 7. Kazimierski, W., Stateczny, A.: Radar and Automatic Identification System track fusion in an Electronic Chart Display and Information System. Journal of Navigation, volume: 68, issue: 6, pp: 1141-1154, 2015.10.1017/S0373463315000405
  8. 8. International Maritime Organisation, SOLAS International Convention for the Safety of Life at Sea, 1974.
  9. 9. Jines, SP., Dwyer, DM., Lewis, MB.: The utility of multiple synthesized views in the recognition of unfamiliar faces, Quarterly Journal of Experimental Psychology, vol. 70, issue 5, pp 906-918, 2017.10.1080/17470218.2016.1158302521480226909545
  10. 10. Choi, K., Jeong, Y., Gil, J.: Design and implementation of P2P home monitoring system architecture with IP cameras for a vacuum robot in ubiquitous environments, International Journal of Sensors Network, vol.20, pp 166-176, 2016.10.1504/IJSNET.2016.080200
  11. 11. Yuksel, G, Yalituna, B., Tartar, O., Yoruk, O.: Ship recognition and classification using silhouettes extracted from optical images, In Proceedings of Signal Processing and Communication Application Conference (SIU), IEEE 2016.10.1109/SIU.2016.7496065
  12. 12. Akinlar, C., Topal,: EDCircles: A real-time circle detector with a false detection control, Pattern Recognit., vol. 46, no. 3, pp. 725–740, 2013.10.1016/j.patcog.2012.09.020
  13. 13. Zhang, H., Wiklund, K., Andersson, M.: A fast and robust circle detection method using isosceles triangles sampling, Pattern Recognition, vol. 54, pp. 218–228, 2015.10.1016/j.patcog.2015.12.004
  14. 14. Barata, C., Ruela, M., Francisco, M., Mendonca, T. & Marques, J. S.: Two systems for the detection of melanomas in dermoscopy images using texture and color features, IEEE Syst. Journal., vol. 8, no. 3, pp. 965–979, 2014.10.1109/JSYST.2013.2271540
  15. 15. Hu, P., Wang, W., Zhang, C. & Lu, K.: Detecting Salient Objects via Color and Texture Compactness Hypotheses, IEEE Trans. Image Process., vol. 25, no. 10, pp. 4653–4664, 2016.10.1109/TIP.2016.2594489
  16. 16. Chaudhary, P., Sharma, S.: A Color, Texture and Shape Based Hybrid Approach for Clothing Retrieval Techniques, IJMCA, vol. 6, no. 4, pp. 382–387, 2016.
  17. 17. Kadir, A., Nugroho, L., Susanto, A. & Santosa, P.: Leaf Classification Using Shape, Color, and Texture Features, Int. J. Comput. Trends Technol., pp. 225–230, 2011.
  18. 18. Wawrzyniak, N., Stateczny, A.: MSIS Image Positioning in Port Areas with the Aid of Comparative Navigation Methods. Polish Maritime Research, vol. 24, Issue. 1, pp. 32-41, 2017.10.1515/pomr-2017-0004
  19. 19. Viola, P., Jones M.: Rapid object detection using a boosted cascade of simple features, Computer Vision Pattern Recognition, vol. 1, p. I-511-I-518, 2001.10.1109/CVPR.2001.990517
  20. 20. Wen, X., Shao, L., Fang, W. & Xue, Y.: Efficient feature selection and classification for vehicle detection, IEEE Trans. Circuits Syst. Video Technol., vol. 25, no. 3, pp. 508–517, 2015.10.1109/TCSVT.2014.2358031
  21. 21. Wen, X., Shao, L., Xue, Y., & Fang, W.: A rapid learning algorithm for vehicle classification, Inf. Sci. (Ny)., vol. 295, pp. 395–406, 2015.10.1016/j.ins.2014.10.040
  22. 22. Feineigle, P.A., Morris, D.D., Snyder, F.D.: Ship Recognition Using Optical Imagery for Harbor Surveillance, Proceedings of Association for Unmanned Vehicle Systems International (AUVSI), Washington DC, 2007.
  23. 23. Tang, J., Deng, C., Huang, G., & Zhao, B.: Compressed-Domain Ship Detection on Spaceborne Optical Image Using Deep Neural Network and Extreme Learning Machine, IEEE Trans. Geosci. Remote Sens., vol. 53, no. 3, pp. 1174–1185, 2015.10.1109/TGRS.2014.2335751
  24. 24. Zou, Z., Shi, Z.: Ship detection in spaceborne optical image with SVD networks, vol. 54, no. 10, pp. 5832–5845, 2016.10.1109/TGRS.2016.2572736
  25. 25. Stateczny, A.: Sensors in River Information Services of the Odra River in Poland: Current State and Planned Extension. Proceedings of Baltic Geodesy Congress, Gdansk, Poland, 2017.10.1109/BGC.Geomatics.2017.77
  26. 26. Stateczny, A., Lubczonek, J., Kantak T.: Radar Sensors Planning for the Purpose of Extension of River Information Services in Poland. Proceedings of 16th International Radar Symposium (IRS), International Radar Symposium Proceedings, H. Rohling (Ed.), Dresden, Germany, 2015.10.1109/IRS.2015.7226251
  27. 27. IALA Recommendation V-145 on the Inter-VTS Exchange Format (IVEF) Service, Edition 1.0, 2011.
  28. 28. Kazimierski, W., Stateczny, A.: Fusion of Data from AIS and Tracking Radar for the Needs of ECDIS. Signal Processing Symposium, Jachranka, 2013.10.1109/SPS.2013.6623592
  29. 29. Kazimierski, W., Wawrzyniak, N.: Exchange of navigational information between VTS and RIS for inland shipping user needs, in Mikulski J.(ed.) Telematics in the Transport Environment, Book Series: CCIS vol.471, pp. 294-303, 2014.10.1007/978-3-662-45317-9_31
  30. 30. Galor, W.: Sea-river shipping in Polish inland water, Scientific Journal of Maritime University of Szczecin, vol. 50 (122), pp. 84–90, 2017.
  31. 31. IRIS 2 Europe, Implementation of River Information Services in Europe, Technical concept for RIS data exchange (part of R2D2), SuAc 3.4, 2010.
  32. 32. Kazimierski, W., Zaniewicz, G., Olkowska, I.: Integrated presentation of navigational data in a mobile navigation system for inland waters with the use of HUD, Scientific Journal of Maritime University of Szczecin, vol. 49 (121), pp. 84–92, 2017.
  33. 33. Wlodarczyk-Sielicka, M.: Importance of neighbourhood parameters during clustering of bathymetric data using neural network. G. Dregvaite and R. Damasevicius (Eds.): ICIST 2016, Communications in Computer and Information Science 639: Information and Software Technologies, pp 441-452, 2016,10.1007/978-3-319-46254-7_35
  34. 34. Kedzierski, M., Wierzbicki, D.: Methodology of improvement of radiometric quality of images acquired from low altitudes, Measurement, Vol. 92, pp. 70-78, 2016.10.1016/j.measurement.2016.06.003
DOI: https://doi.org/10.2478/pomr-2018-0016 | Journal eISSN: 2083-7429 | Journal ISSN: 1233-2585
Language: English
Page range: 5 - 13
Published on: Jun 7, 2018
Published by: Gdansk University of Technology
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2018 Natalia Wawrzyniak, Andrzej Stateczny, published by Gdansk University of Technology
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.