Have a personal or library account? Click to login

Determining Effective Length for 40 HM-T Steel by Use of Non-Local Line Method Concept

Open Access
|Apr 2018

References

  1. 1. Adib-Ramezani H., Jeong J., Advanced volumetric method for fatigue life prediction using stress gradient effects at notch roots, Computational Materials Science, 39 (2007) 649–663.10.1016/j.commatsci.2006.08.017
  2. 2. Carpinteri A, Spagnoli A., Vantadori S., Viappiani D., A multiaxial criterion for notch high-cycle fatigue using a critical-point method, Engineering Fracture Mechanics 75 (2008) 1864-1874.10.1016/j.engfracmech.2006.11.002
  3. 3. Cichański A., Influence of finite element order on SCF precision for U-shaped notches in flat bars under tension, Proceedings of 17th International Conference on Engineering Mechanics 2011, Svratka-Czech Republic, (2011) 79-82.
  4. 4. Cichański A., The influence of mesh morphology on the SCF in 2D FEM analysis of flat bars with opposite V-notch under tension, Proceedings of 22nd International Conference on Engineering Mechanics 2016, Svratka-Czech Republic, (2016) 110-113.
  5. 5. Cichański A., Mesh size dependency on notch radius for FEM analysis of notched round bars under tension, AIP Conference Proceedings 1822, 020004 (2017).10.1063/1.4977678
  6. 6. De-Guang Shang, Da-Kang Wang, Ming Li, Wei-Xing Yao, Local stress-strain field intensity approach to fatigue life prediction under random cyclic loading, International Journal of Fatigue, 23 (2001) 903-910.10.1016/S0142-1123(01)00051-2
  7. 7. Irwin G., Analysis of stresses and strains near the end of a crack traversing a plate, Journal of Applied Mechanics, 24 (1957) 361–364.10.1115/1.4011547
  8. 8. Karolczuk A., Blacha Ł., Fatigue life estimation under variable amplitude bending using the non-local damage parameter and multisurface plasticity model, International Journal of Fatigue 33 (2011) 1376–1383.10.1016/j.ijfatigue.2011.05.003
  9. 9. Kluger K., Łagoda T., Fatigue life estimation for selected materials in multiaxial stress states with mean stress, Journal of theoretical and applied mechanics, 54 (2016) 385-396.10.15632/jtam-pl.54.2.385
  10. 10. Krzyżak D., Łagoda T., Fatigue life estimation of notched elements with use of non-local volumetric method, International Journal of Fatigue, Vol. 61 (2014) 59-66.10.1016/j.ijfatigue.2013.12.004
  11. 11. Krzyżak D., Robak G., Łagoda T., Determining fatigue life of bent and tensioned elements with a notch, with use of fictitious radius, Fatigue and Fracture of Engineering Materials and Structures, 38 (2015) 693-699.10.1111/ffe.12276
  12. 12. Krzyżak D., Robak, G., Łagoda, T., Non-local line method with weight function and critical plane approaches used for fatigue life calculation of notched elements, Fatigue and Fracture of Engineering Materials and Structures Vol. 40, 2017.10.1111/ffe.12478
  13. 13. Łagoda, T., Robak, G. and Słowik, J., Fatigue life of steel notched elements including the complex stress state. Materials and Design, 51 (2013) 935–942.10.1016/j.matdes.2013.04.087
  14. 14. Neuber H., Über die Berücksichtigung der Spannungskonzentration bei Festigkeitsberechnungen, Konstruktion im Maschinen-Apparatte und Gerätebau, Heft 7 (1968) 245-251.
  15. 15. Pawliczek R., Kluger K., Influence of irregularity coefficient of loading on calculated fatigue life, Journal of Theoretical and Applied mechanics, 51 No. 4 (2013).
  16. 16. Pluvinage G., Fracture and fatigue emanating from stress concentrators, Kluwer, Dordrecht (2003).
  17. 17. Radaj D, Vormwand M., Advanced methods of fatigue assessment. Springer Verlag Berlin Heidelberg (2013).10.1007/978-3-642-30740-9
  18. 18. Radaj D., Lazzarin P., Berto F., Generalised Neuber concept of fictitious notch rounding, International Journal of Fatigue, Vol. 51 (2013) 105-115.10.1016/j.ijfatigue.2013.01.005
  19. 19. Ritchie RO., Knott JF., Rice JR., On the relationship between critical tensile stress and fracture toughness in mild steel, Journal of the Mechanics and Physics of Solids, 21 (1973) 359–410.10.1016/0022-5096(73)90008-2
  20. 20. Robak G., Szymaniec M., Łagoda T., The fictitious radius as a tool for fatigue life estimation of notched elements, Materials Science Forum, 726 (2012) 27-32.10.4028/www.scientific.net/MSF.726.27
  21. 21. Rozumek D., Marciniak Z., Fatigue properties of notched specimens made of FeP04 steel. Materials Science, 47(4) (2012) 462-469.10.1007/s11003-012-9417-x
  22. 22. Seweryn A., Brittle fracture criterion for structures with sharp notches, Engineering Fracture Mechanics, 47 (4) (1994) 673-681.10.1016/0013-7944(94)90158-9
  23. 23. Sonsino C.M., Łagoda T., Assessment of multiaxial fatigue behaviour of welded joints under combined bending and torsion by application of a fictitious notch radius, International Journal of Fatigue, 26 (2004) 265-279.10.1016/S0142-1123(03)00143-9
  24. 24. Szala G. Comments on linear summation hypothesis of fatigue failures, Polish Maritime Research 3(83) Vol. 21, (2014)10.2478/pomr-2014-0033
  25. 25. Taylor D., Predicting the fracture strength of ceramic materials using the theory of critical distances, Engineering Fracture Mechanics, 71 (2004) 2407-2416.10.1016/j.engfracmech.2004.01.002
  26. 26. Yao W., Ye B., Zheng L. A verification of the assumption of anti-fatigue design, International Journal of Fatigue, 23 (2001) 271-27710.1016/S0142-1123(00)00083-9
DOI: https://doi.org/10.2478/pomr-2018-0015 | Journal eISSN: 2083-7429 | Journal ISSN: 1233-2585
Language: English
Page range: 128 - 136
Published on: Apr 11, 2018
Published by: Gdansk University of Technology
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2018 Grzegorz Robak, Daniel Krzyżak, Artur Cichański, published by Gdansk University of Technology
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.