2. P. R. Cabezas and G. Kasoulides, “International Maritime Organization,” Int. J. Mar. Coast. Law, vol. 3, no. 3, pp. 235–245, 2004.10.1163/187529988X00184
12. H. Naar, P. Kujala, B. C. Simonsen, and H. Ludolphy, “Comparison of the crashworthiness of various bottom and side structures,” Mar. Struct., vol. 15, no. 4–5, pp. 443–460, 2002.10.1016/S0951-8339(02)00012-6
13. A. Klanac, S. Ehlers, and J. Jelovica, “Optimization of crashworthy marine structures,” Mar. Struct., vol. 22, no. 4, pp. 670–690, 2009.10.1016/j.marstruc.2009.06.002
14. P. Hogstrom and J. W. Ringsberg, “Assessment of the crashworthiness of a selection of innovative ship structures,” Ocean Eng., vol. 59, pp. 58–72, 2013.10.1016/j.oceaneng.2012.12.024
15. V. Rubino, V. S. Deshpande, and N. A. Fleck, “The collapse response of sandwich beams with a Y-frame core subjected to distributed and local loading,” Int. J. Mech. Sci., vol. 50, no. 2, pp. 233–246, 2008.10.1016/j.ijmecsci.2007.07.007
16. L. St-Pierre, V. S. Deshpande, and N. A. Fleck, “The low velocity impact response of sandwich beams with a corrugated core or a Y-frame core,” Int. J. Mech. Sci., vol. 91, pp. 71–80, 2015.10.1016/j.ijmecsci.2014.02.014
17. S. Hou, S. Zhao, L. Ren, X. Han, and Q. Li, “Crashworthiness optimization of corrugated sandwich panels,” Mater. Des., vol. 51, pp. 1071–1084, 2013.10.1016/j.matdes.2013.04.086
18. A. Christian and G. O. K. Chye, “Performance of fiber reinforced high-strength concrete with steel sandwich composite system as blast mitigation panel,” in Procedia Engineering, 2014, vol. 95, pp. 150–157.10.1016/j.proeng.2014.12.174
19. E. A. Flores-Johnson and Q. M. Li, “Structural behaviour of composite sandwich panels with plain and fibre-reinforced foamed concrete cores and corrugated steel faces,” Compos. Struct., vol. 94, no. 5, pp. 1555–1563, 2012.10.1016/j.compstruct.2011.12.017
20. T. J. Grafton and J. R. Weitzenböck, “Steel-concrete-steel sandwich structures in ship and offshore engineering,” Adv. Mar. Struct. - Proc. 3rd Int. Conf. Mar. Struct. MARSTRUCT 2011, pp. 549–558, 2011.10.1201/b10771-67
21. J. Romanoff and P. Kujala, “OPTIMUM DESIGN FOR STEEL SANDWICH PANELS FILLED WITH POLYMERIC FOAM,” in FAST 2001 The 6th International Conference on Fast Sea Transportation, 2001, no. September.10.3940/rina.ft.2001.72
22. J. D. Poirier, S. S. Vel, and V. Caccese, “Multi-objective optimization of laser-welded steel sandwich panels for static loads using a genetic algorithm,” Eng. Struct., vol. 49, pp. 508–524, 2013.10.1016/j.engstruct.2012.10.033
23. J. Romanoff, “Optimization of web-core steel sandwich decks at concept design stage using envelope surface for stress assessment,” Eng. Struct., vol. 66, pp. 1–9, 2014.10.1016/j.engstruct.2014.01.042
24. D. Boroński, “Cyclic material properties distribution in laser-welded joints,” Int. J. Fatigue, vol. 28, no. 4, pp. 346–354, 2006.10.1016/j.ijfatigue.2005.07.029
25. J. Kozak, “Selected problems on application of steel sandwich panels to marine structures,” Polish Marit. Res., vol. 16, no. 4, pp. 9–15, 2010.10.2478/v10012-008-0050-4
26. H. Remes and P. Varsta, “Statistics of Weld Geometry for Laser-Hybrid Welded Joints and its Application within Notch Stress Approach,” Weld. World, vol. 54, no. 7, pp. R189–R207, 2010.10.1007/BF03263505
27. R. Soltysiak and D. Boronski, “Strain analysis at notch root in laser welded samples using material properties of individual weld zones,” Int. J. Fatigue, vol. 74, pp. 71–80, 2015.10.1016/j.ijfatigue.2014.12.004
28. N. A. McPherson, N. Suarez-Fernandez, D. W. Moon, C. P. H. Tan, C. K. Lee, and T. N. Baker, “Laser and laser assisted arc welding processes for DH 36 microalloyed steel ship plate,” Sci. Technol. Weld. Join., vol. 10, no. 4, pp. 460–467, 2005.10.1179/174329305X44099
29. V. Caccese, P. A. Blomquist, K. A. Berube, S. R. Webber, and N. J. Orozco, “Effect of weld geometric profile on fatigue life of cruciform welds made by laser/GMAW processes,” Mar. Struct., vol. 19, no. 1, pp. 1–22, 2006.10.1016/j.marstruc.2006.07.002
30. C. M. Sonsino, M. Kueppers, M. Eibl, and G. Zhang, “Fatigue strength of laser beam welded thin steel structures under multiaxial loading,” Int. J. Fatigue, vol. 28, no. 5–6, pp. 657–662, 2006.10.1016/j.ijfatigue.2005.09.013
31. K. Salonitis, P. Stavropoulos, A. Fysikopoulos, and G. Chryssolouris, “CO2 laser butt-welding of steel sandwich sheet composites,” Int. J. Adv. Manuf. Technol., vol. 69, no. 1–4, pp. 245–256, 2013.10.1007/s00170-013-5025-7
32. D. Frank, J. Romanoff, and H. Remes, “Fatigue strength assessment of laser stake-welded web-core steel sandwich panels,” Fatigue Fract. Eng. Mater. Struct., vol. 36, no. 8, pp. 724–737, 2013.10.1111/ffe.12038
33. D. Frank, J. Romanoff, and H. Remes, “Fatigue life improvement of laser-welded web-core steel sandwich panels using filling materials,” in Analysis and Design of Marine Structures - Proceedings of the 5th International Conference on Marine Structures, MARSTRUCT 2015, 2015.
34. A. T. Karttunen et al., “Fatigue strength of laser-welded foam-filled steel sandwich beams,” Mater. Des., vol. 115, pp. 64–72, 2017.10.1016/j.matdes.2016.11.039
35. J. W. Sowards et al., “Low-cycle fatigue behavior of fiber-laser welded, corrosion-resistant, high-strength low alloy sheet steel,” Mater. Des., vol. 121, pp. 393–405, 2017.10.1016/j.matdes.2017.02.065
36. W. Fricke, C. Robert, R. Peters, and A. Sumpf, “Fatigue strength of laser-stake welded T-joints subjected to combined axial and shear loads,” Weld. World, vol. 60, no. 3, pp. 593–604, 2016.10.1007/s40194-016-0322-z
37. D. Frank, P. Dissel, H. Remes, J. Romanoff, and O. Klostermann, “Fatigue strength assessment of laser stake-welded T-joints subjected to reversed bending,” Fatigue Fract. Eng. Mater. Struct., vol. 39, no. 10, pp. 1272–1280, 2016.10.1111/ffe.12442
39. D. Radaj, C. M. Sonsino, and W. Fricke, “Recent developments in local concepts of fatigue assessment of welded joints,” Int. J. Fatigue, vol. 31, no. 1, pp. 2–11, 2009.10.1016/j.ijfatigue.2008.05.019
40. C. M. Sonsino, W. Fricke, F. De Bruyne, A. Hoppe, A. Ahmadi, and G. Zhang, “Notch stress concepts for the fatigue assessment of welded joints - Background and applications,” Int. J. Fatigue, vol. 34, no. 1, pp. 2–16, 2012.10.1016/j.ijfatigue.2010.04.011
41. D. Frank, “Fatigue strength assessment of laser stake-welded T-joints using local approaches,” Int. J. Fatigue, vol. 73, pp. 77–87, 2015.10.1016/j.ijfatigue.2014.11.009
42. K. Niklas, “Calculations of notch stress factor of a thin-walled spreader bracket fillet weld with the use of a local stress approach,” Eng. Fail. Anal., vol. 45, 2014.10.1016/j.engfailanal.2014.06.017
43. A. Cichanski, “The influence of mesh morphology on the SCF in 2D FEM analysis of flat bars with opposite V-notch under tension,” in 22nd International Conference on Engineering Mechanics, 2016, pp. 110–113.
44. K. Niklas and J. Kozak, Influence of the notch rounding radius on estimating the elastic notch stress concentration factor in a laser welded tee joint, vol. 726. 2012.10.4028/www.scientific.net/MSF.726.100
45. Niklas K.; Kozak J., “Comparison of strain results at a laser weld notch obtained by numerical calculations and experimental measurements,” AIP Conf. Proc. 1780, Am. Inst. Phys., 2016.10.1063/1.4965946