Have a personal or library account? Click to login

The Effect of Numerical 2D and 3D Fem Element Modelling on Strain and Stress Distributions at Laser Weld Notches in Steel Sandwich Type Panels

By:
Open Access
|Apr 2018

References

  1. 1. UNCTAD, “Review of Maritime Transport 2016,” 2016.
  2. 2. P. R. Cabezas and G. Kasoulides, “International Maritime Organization,” Int. J. Mar. Coast. Law, vol. 3, no. 3, pp. 235–245, 2004.10.1163/187529988X00184
  3. 3. T. W. P. Smith et al., “Third IMO Greenhouse Gas Study 2014,” 2014.
  4. 4. IMO, “MARPOL Annex VI, Chapter 4,” 2011.
  5. 5. IMO, “MEPC 69/21. Report of the Marine Environment Protection Committee on its sixty-ninth session,” 2016.
  6. 6. European Parliament and Council of the European Union, “Directive 2012/33/EU of the European Parliament and of the Council,” 2012.
  7. 7. IMO, “MEPC.215(93) – Guidelines for calculation of reference lines for use with the Energy Efficiency Design Index (EEDI),” 2012.
  8. 8. IMO, “MEPC.214(93) – 2012 Guidelines on survey and certification of the Energy Efficiency Design Index (EEDI),” 2012.
  9. 9. IMO, “MEPC.212(93) – 2012 Guidelines on the method of calculation of the attained Energy Efficiency Design Index (EEDI) for new ships,” 2012.
  10. 10. IMO, “MEPC.213(93) – 2012 Guidelines for the development of a Ship Energy Efficiency Management Plan (SEEMP),” 2012.
  11. 11. American Bureau of Shipping, “Ship Energy Efficiency Measures - Status and Guidance,” 2013.
  12. 12. H. Naar, P. Kujala, B. C. Simonsen, and H. Ludolphy, “Comparison of the crashworthiness of various bottom and side structures,” Mar. Struct., vol. 15, no. 4–5, pp. 443–460, 2002.10.1016/S0951-8339(02)00012-6
  13. 13. A. Klanac, S. Ehlers, and J. Jelovica, “Optimization of crashworthy marine structures,” Mar. Struct., vol. 22, no. 4, pp. 670–690, 2009.10.1016/j.marstruc.2009.06.002
  14. 14. P. Hogstrom and J. W. Ringsberg, “Assessment of the crashworthiness of a selection of innovative ship structures,” Ocean Eng., vol. 59, pp. 58–72, 2013.10.1016/j.oceaneng.2012.12.024
  15. 15. V. Rubino, V. S. Deshpande, and N. A. Fleck, “The collapse response of sandwich beams with a Y-frame core subjected to distributed and local loading,” Int. J. Mech. Sci., vol. 50, no. 2, pp. 233–246, 2008.10.1016/j.ijmecsci.2007.07.007
  16. 16. L. St-Pierre, V. S. Deshpande, and N. A. Fleck, “The low velocity impact response of sandwich beams with a corrugated core or a Y-frame core,” Int. J. Mech. Sci., vol. 91, pp. 71–80, 2015.10.1016/j.ijmecsci.2014.02.014
  17. 17. S. Hou, S. Zhao, L. Ren, X. Han, and Q. Li, “Crashworthiness optimization of corrugated sandwich panels,” Mater. Des., vol. 51, pp. 1071–1084, 2013.10.1016/j.matdes.2013.04.086
  18. 18. A. Christian and G. O. K. Chye, “Performance of fiber reinforced high-strength concrete with steel sandwich composite system as blast mitigation panel,” in Procedia Engineering, 2014, vol. 95, pp. 150–157.10.1016/j.proeng.2014.12.174
  19. 19. E. A. Flores-Johnson and Q. M. Li, “Structural behaviour of composite sandwich panels with plain and fibre-reinforced foamed concrete cores and corrugated steel faces,” Compos. Struct., vol. 94, no. 5, pp. 1555–1563, 2012.10.1016/j.compstruct.2011.12.017
  20. 20. T. J. Grafton and J. R. Weitzenböck, “Steel-concrete-steel sandwich structures in ship and offshore engineering,” Adv. Mar. Struct. - Proc. 3rd Int. Conf. Mar. Struct. MARSTRUCT 2011, pp. 549–558, 2011.10.1201/b10771-67
  21. 21. J. Romanoff and P. Kujala, “OPTIMUM DESIGN FOR STEEL SANDWICH PANELS FILLED WITH POLYMERIC FOAM,” in FAST 2001 The 6th International Conference on Fast Sea Transportation, 2001, no. September.10.3940/rina.ft.2001.72
  22. 22. J. D. Poirier, S. S. Vel, and V. Caccese, “Multi-objective optimization of laser-welded steel sandwich panels for static loads using a genetic algorithm,” Eng. Struct., vol. 49, pp. 508–524, 2013.10.1016/j.engstruct.2012.10.033
  23. 23. J. Romanoff, “Optimization of web-core steel sandwich decks at concept design stage using envelope surface for stress assessment,” Eng. Struct., vol. 66, pp. 1–9, 2014.10.1016/j.engstruct.2014.01.042
  24. 24. D. Boroński, “Cyclic material properties distribution in laser-welded joints,” Int. J. Fatigue, vol. 28, no. 4, pp. 346–354, 2006.10.1016/j.ijfatigue.2005.07.029
  25. 25. J. Kozak, “Selected problems on application of steel sandwich panels to marine structures,” Polish Marit. Res., vol. 16, no. 4, pp. 9–15, 2010.10.2478/v10012-008-0050-4
  26. 26. H. Remes and P. Varsta, “Statistics of Weld Geometry for Laser-Hybrid Welded Joints and its Application within Notch Stress Approach,” Weld. World, vol. 54, no. 7, pp. R189–R207, 2010.10.1007/BF03263505
  27. 27. R. Soltysiak and D. Boronski, “Strain analysis at notch root in laser welded samples using material properties of individual weld zones,” Int. J. Fatigue, vol. 74, pp. 71–80, 2015.10.1016/j.ijfatigue.2014.12.004
  28. 28. N. A. McPherson, N. Suarez-Fernandez, D. W. Moon, C. P. H. Tan, C. K. Lee, and T. N. Baker, “Laser and laser assisted arc welding processes for DH 36 microalloyed steel ship plate,” Sci. Technol. Weld. Join., vol. 10, no. 4, pp. 460–467, 2005.10.1179/174329305X44099
  29. 29. V. Caccese, P. A. Blomquist, K. A. Berube, S. R. Webber, and N. J. Orozco, “Effect of weld geometric profile on fatigue life of cruciform welds made by laser/GMAW processes,” Mar. Struct., vol. 19, no. 1, pp. 1–22, 2006.10.1016/j.marstruc.2006.07.002
  30. 30. C. M. Sonsino, M. Kueppers, M. Eibl, and G. Zhang, “Fatigue strength of laser beam welded thin steel structures under multiaxial loading,” Int. J. Fatigue, vol. 28, no. 5–6, pp. 657–662, 2006.10.1016/j.ijfatigue.2005.09.013
  31. 31. K. Salonitis, P. Stavropoulos, A. Fysikopoulos, and G. Chryssolouris, “CO2 laser butt-welding of steel sandwich sheet composites,” Int. J. Adv. Manuf. Technol., vol. 69, no. 1–4, pp. 245–256, 2013.10.1007/s00170-013-5025-7
  32. 32. D. Frank, J. Romanoff, and H. Remes, “Fatigue strength assessment of laser stake-welded web-core steel sandwich panels,” Fatigue Fract. Eng. Mater. Struct., vol. 36, no. 8, pp. 724–737, 2013.10.1111/ffe.12038
  33. 33. D. Frank, J. Romanoff, and H. Remes, “Fatigue life improvement of laser-welded web-core steel sandwich panels using filling materials,” in Analysis and Design of Marine Structures - Proceedings of the 5th International Conference on Marine Structures, MARSTRUCT 2015, 2015.
  34. 34. A. T. Karttunen et al., “Fatigue strength of laser-welded foam-filled steel sandwich beams,” Mater. Des., vol. 115, pp. 64–72, 2017.10.1016/j.matdes.2016.11.039
  35. 35. J. W. Sowards et al., “Low-cycle fatigue behavior of fiber-laser welded, corrosion-resistant, high-strength low alloy sheet steel,” Mater. Des., vol. 121, pp. 393–405, 2017.10.1016/j.matdes.2017.02.065
  36. 36. W. Fricke, C. Robert, R. Peters, and A. Sumpf, “Fatigue strength of laser-stake welded T-joints subjected to combined axial and shear loads,” Weld. World, vol. 60, no. 3, pp. 593–604, 2016.10.1007/s40194-016-0322-z
  37. 37. D. Frank, P. Dissel, H. Remes, J. Romanoff, and O. Klostermann, “Fatigue strength assessment of laser stake-welded T-joints subjected to reversed bending,” Fatigue Fract. Eng. Mater. Struct., vol. 39, no. 10, pp. 1272–1280, 2016.10.1111/ffe.12442
  38. 38. D. Radaj, C. M. Sonsino, and W. Fricke, Fatigue assessment of welded joints by local approaches. 2006.10.1533/9781845691882
  39. 39. D. Radaj, C. M. Sonsino, and W. Fricke, “Recent developments in local concepts of fatigue assessment of welded joints,” Int. J. Fatigue, vol. 31, no. 1, pp. 2–11, 2009.10.1016/j.ijfatigue.2008.05.019
  40. 40. C. M. Sonsino, W. Fricke, F. De Bruyne, A. Hoppe, A. Ahmadi, and G. Zhang, “Notch stress concepts for the fatigue assessment of welded joints - Background and applications,” Int. J. Fatigue, vol. 34, no. 1, pp. 2–16, 2012.10.1016/j.ijfatigue.2010.04.011
  41. 41. D. Frank, “Fatigue strength assessment of laser stake-welded T-joints using local approaches,” Int. J. Fatigue, vol. 73, pp. 77–87, 2015.10.1016/j.ijfatigue.2014.11.009
  42. 42. K. Niklas, “Calculations of notch stress factor of a thin-walled spreader bracket fillet weld with the use of a local stress approach,” Eng. Fail. Anal., vol. 45, 2014.10.1016/j.engfailanal.2014.06.017
  43. 43. A. Cichanski, “The influence of mesh morphology on the SCF in 2D FEM analysis of flat bars with opposite V-notch under tension,” in 22nd International Conference on Engineering Mechanics, 2016, pp. 110–113.
  44. 44. K. Niklas and J. Kozak, Influence of the notch rounding radius on estimating the elastic notch stress concentration factor in a laser welded tee joint, vol. 726. 2012.10.4028/www.scientific.net/MSF.726.100
  45. 45. Niklas K.; Kozak J., “Comparison of strain results at a laser weld notch obtained by numerical calculations and experimental measurements,” AIP Conf. Proc. 1780, Am. Inst. Phys., 2016.10.1063/1.4965946
DOI: https://doi.org/10.2478/pomr-2018-0014 | Journal eISSN: 2083-7429 | Journal ISSN: 1233-2585
Language: English
Page range: 121 - 127
Published on: Apr 11, 2018
Published by: Gdansk University of Technology
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2018 Karol Niklas, Janusz Kozak, published by Gdansk University of Technology
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.