Have a personal or library account? Click to login
Outlier Detection in Ocean Wave Measurements by Using Unsupervised Data Mining Methods Cover

Outlier Detection in Ocean Wave Measurements by Using Unsupervised Data Mining Methods

Open Access
|Apr 2018

References

  1. 1. Iglewicz, B., Hoaglin, D.C.: How to detect and handle outliers. Milwaukee, WI.: ASQC Quality Press, 1993.
  2. 2. Sun S. Z., LI, H., Sun, H. : Measurement and analysis of coastal waves along the north sea area of China. Polish Maritime Research, 3 (91) 2016, 23, pp. 72-78.10.1515/pomr-2016-0034
  3. 3. Whan Lee, J., Park, S. C., Kee Lee, D., Ho Lee, J. : Tsunami arrival time detection system applicable to discontinuous time-series data with outliers. Journal of natural hazards and earth sciences, 2016, 16 (12), pp. 2603-2016.10.5194/nhess-16-2603-2016
  4. 4. Mínguez, R., Reguero, B.G., Luceño, A., Méndez, F.J. : Regression models for outlier identification (hurricanes and typhoons) in wave hindcast databases. Journal of Atmospheric and Oceanic Technology, 2012, 29, pp. 267–285.10.1175/JTECH-D-11-00059.1
  5. 5. Lucas, C., Muraleedharan, G., Soares, C. G. : Outliers identification in a wave hindcast dataset used for regional frequency analysis. Maritime Technology and Engineering, 2015, pp. 1317-1327.10.1201/b17494-178
  6. 6. Reguero, B.G., Menéndez, M., Méndez, F.J., Mínguez, R., Losada, I. J. : A Global Ocean Wave (GOW) calibrated reanalysis from 1948 onwards. Coastal Engineering, 2012, 65, pp. 38–55.10.1016/j.coastaleng.2012.03.003
  7. 7. Chandola. V., Banerjee, A., Kumar, V. : Anomaly detection – a survey. ACM Comput Surv. 2009, 4 (3), pp. 1–58.10.1145/1541880.1541882
  8. 8. Barnett, V., Lewis, T. : Outliers in Statistical Data. John Wiley, 3rd edition 1994.
  9. 9. Zhang, Ji. : Advancements of Outlier Detection: A Survey. ICST Transactions on Scalable Information Systems, 2013, 13 (1), pp. 1-26.10.4108/trans.sis.2013.01-03.e2
  10. 10. Muraleedharan, G., Lucas, C., Guedes Soares, C.: Regression quantile models for estimating trends in extreme significant wave heights. J. Ocean Engineering. 2016, 118, pp. 204–215.10.1016/j.oceaneng.2016.04.009
  11. 11. Zhang, K., Hutter, M., Jin, H. : A new local distance-based outlier detection approach for scattered real-world data. Proc. 13th Pacific-Asia Conf. on Knowledge Discovery and Data Mining, 2009, pp. 813-822.10.1007/978-3-642-01307-2_84
  12. 12. Chen, Y., Miao, D., Zhang, H. : Neighborhood outlier detection. Expert Systems with Applications, 2010, 37 (12), pp. 8745-8749.10.1016/j.eswa.2010.06.040
  13. 13. Breunig, M. M., Kriegel, H.-P., Ng, R. T., et al.: LOF: Identifying density-based local outliers. In W. Chen, J. F. Naughton, & P. A. Bernstein (Eds.), Proceedings of the ACM SIGMOD international conference on management of data, ACM Press, Dallas, Texas, 2000, pp. 93–104.10.1145/335191.335388
  14. 14. Troncoso, A., Salcedo-Sanz, Casanova-Mateo, S., Riquelme, J.C, C., Prieto, L. : Local models-based regression trees for very short-term wind speed prediction. Renewable Energy, 2015, 81, pp. 589-598.10.1016/j.renene.2015.03.071
DOI: https://doi.org/10.2478/pomr-2018-0005 | Journal eISSN: 2083-7429 | Journal ISSN: 1233-2585
Language: English
Page range: 44 - 50
Published on: Apr 11, 2018
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2018 Kumars Mahmoodi, Hassan Ghassemi, published by Gdansk University of Technology
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.