Have a personal or library account? Click to login

Analysis of Ventilation Regimes of the Oblique Wedge-Shaped Surface Piercing Hydrofoil During Initial Water Entry Process

Open Access
|Apr 2018

References

  1. 1. Brandt H.: Modellversuche mit Schiffspropellern an der Wasseroberfiache, Schiff und Hafen. 25(5), 1973, pp.415–422.
  2. 2. Cox B.D.: Hydrofoil theory for vertical water entry, PhD thesis, Massachusetts Institute of Technology, Cambridge, MA, USA, 1971.
  3. 3. Dinh N.N.: Some Experiments on a Supercavitating Plane Hydrofoil with Jet-Flap, J. Ship Research, SNAME, 1968, pp. 207-219.
  4. 4. Faltinsen O.M., Semenov Y.A.: Nonlinear problem of flat-plate entry into an incompressible liquid. J. Fluid Mech. 611, 2008, pp. 151–173.10.1017/S0022112008002735
  5. 5. Farsi M., Ghadimi P.: Finding the best combination of numerical schemes for 2D SPH simulation of wedge water entry for a wide range of dead-rise angles. Int. J Naval Archit. Ocean Eng. 6, 2014, pp. 638-651.10.2478/IJNAOE-2013-0202
  6. 6. Farsi M., Ghadimi P.: Effect of flat deck on catamaran water entry through smoothed particle hydrodynamics. Institution of Mechanical Engineering Part M, J. Engineering for the Maritime Environment, March, 2014, published online.10.1177/1475090214563960
  7. 7. Farsi M., Ghadimi P.: Simulation of 2D symmetry and asymmetry wedge water entry by smoothed particle hydrodynamics method. J. Brazilian Society of Mech. Sci. Eng. 37(3), 2015, pp. 821-835.10.1007/s40430-014-0212-5
  8. 8. Feizi Chekab M.A., Ghadimi P., Farsi M.: Investigation of three-dimensionality effects on aspect ratio on water impact of 3D objects using smoothed particle hydrodynamics method. J. Brazilian Soc. Mech. Sci. Eng, 2015, published online: June 2015. DOI: 10.1007/s40430-015-0367-8.10.1007/s40430-015-0367-8
  9. 9. Furuya O.: A performance-prediction theory for partially submerged ventilated propellers. J. Fluid Mechanics, 151, 1985, pp. 311-335.10.1017/S0022112085000982
  10. 10. Ghadimi P., Saadatkhah A., Dashtimanesh A.: Analytical solution of wedge water entry by using Schwartz–Christoffel conformal mapping. Int. J. Modeling, Simulation and Scientific Computing. 2(3), 2011, pp. 337-354.10.1142/S1793962311000487
  11. 11. Ghadimi P., Dashtimanesh A., Djeddi S.R.: Study of water entry of circular cylinder by using analytical and numerical solutions. J. Brazilian Society of Mech. Sci. Eng. 37(3),, 2012, pp. 821-83510.1590/S1678-58782012000300001
  12. 12. Ghadimi P., Feizi Chekab MA., Dashtimanesh A.: A numerical investigation of the water impact of an arbitrary bow section. ISH J. Hydraul. Eng. 19(3), 2013, pp. 186-195.10.1080/09715010.2013.796690
  13. 13. Ghadimi P., Feizi Chekab MA., Dashtimanesh A.: Numerical simulation of water entry of different arbitrary bow sections. J Naval Archit. Marine Eng. 11 (2), 2014, pp. 117-129.10.3329/jname.v11i2.18724
  14. 14. Hadler J.B., Hecker R.: Performance of Partially Submerged Propellers, Proc. 7th ONR Symposium on Naval Hydrodynamics, Rome, Italy. 1968.
  15. 15. Hecker R.: Experimental Performance of a Partially Submerged Propeller in Inclined Flow, SNAME Spring Meeting, Lake Buena Vista, Florida, USA, 1973.
  16. 16. Javanmardi N., Ghadimi P.: Hydroelastic analysis of surface piercing hydrofoil during initial water entry phase, J. Scientia Iranica, accepted to be published, 2017.10.24200/sci.2017.20010
  17. 17. Javanmardi N., Ghadimi P.: Hydroelastic analysis of a semi submerged propeller using simultaneous solution of Reynolds averaged Navier–Stokes equations and linear elasticity equations, Journal of Engineering for Maritime Environment,? 2017.10.1177/1475090217691864
  18. 18. Ji B., Luo X.W., Wang X., Peng X.X., Wu Y.L., Xu H.Y.: Unsteady numerical simulation of cavitating turbulent flow around a highly skewed model marine propeller. J. Fluids Eng.-Trans, ASME, 133 (1), 011102, 2011.10.1115/1.4003355
  19. 19. Khabkkhpasheva TI, Kim Y, Korobkin AA.: Generalized Wagner Model of Water Impact by Numerical Conformal Mapping. App. Ocean Res. 44, 2014, pp. 29-38.10.1016/j.apor.2013.10.007
  20. 20. Kruppa CFL.: Testing of Partially Submerged Propellers, Proc. 13th ITTC Report on Cavitation. Berlin & Hamburg, Germany, 1972.
  21. 21. Kudo T., Ukon Y.: Calculation of super cavitating propeller performance using a vortex-lattice method, in: Second International Symposium on Cavitation, Tokyo, Japan, 1994.10.2534/jjasnaoe1968.1994.47
  22. 22. Kudo T., Kinnas S.: Application of vortex/source lattice method on supercavitating propellers, in 24th American Towing Tank Conference, College Station, TX, USA, 1995.10.5957/ATTC-1995-005
  23. 23. Maki K.J., Lee D., Troesch A.W., Vlahopoulos N.: Hydroelastic impact of a wedge-shaped body. Ocean Engineering 38, 2011, pp. 621–629.10.1016/j.oceaneng.2010.12.011
  24. 24. Mejri I., Bakir F., Rey R., Belamri T.: Comparison of computational results obtained from a homogeneous cavitation model with experimental investigations of three inducers, J. Fluids Eng.-Trans. ASME, 128, 2006, pp.1308–132310.1115/1.2353265
  25. 25. Olofsson N.: A Contribution on the Performance of Partially Submerged Propellers, Proc. FAST ‘93, 2nd Intl. Conf. on Fast Sea Transportation. Yokohama, Japan, 1, 1993, pp. 765-776.
  26. 26. Olofsson N.: Force and Flow Characteristics of a Partially Submerged Propeller, PhD Thesis, Department of Naval Architecture and Ocean Engineering, Chalmers Univ., Gotenborg, Sweden, 1996.
  27. 27. Piro D.J., Maki K.J.: Hydroelastic Wedge Entry and Exit. 11th International Conference on Fast Sea Transportation FAST 2011, Honolulu, Hawaii, USA, September 2011.
  28. 28. Piro D.J., Maki K.J.: Hydroelastic analysis of bodies that enter and exit water. Journal of Fluids and Structures 37, 2013, pp. 134–150.10.1016/j.jfluidstructs.2012.09.006
  29. 29. Panciroli, R.: Water entry of flexible wedges: Some issues on the FSI phenomena. App. Ocean Res. 39, 2013, pp.72-74.10.1016/j.apor.2012.10.010
  30. 30. Schnerr G.H., Sauer J.: Physical and numerical modeling of unsteady cavitation dynamics, in: Proceeding of 4th International Conference on Multiphase Flow, New Orleans, USA, 2001.
  31. 31. Shademani, R., Ghadimi P.: Estimation of water entry forces, spray parameters and secondary impact of fixed width wedges at extreme angles using finite element based finite volume and volume of fluid methods. J. Brodogradnja 67(2), 2016, pp. 101-124.
  32. 32. Shademani, R., P. Ghadimi.: Asymmetric Water Entry of Twin Wedges with Different Deadrises, Heel Angles, and Wedge Separations using Finite Element Based Finite Volume Method and VOF. Journal of Applied Fluid Mechanics, 10(1), 2017, pp. 353-368.10.18869/acadpub.jafm.73.238.26185
  33. 33. Shademani R., Ghadimi P.: Numerical assessment of turbulence effect on forces, spray parameters, and secondary impact in wedge water entry problem using k-ε method, Scientia Iranica- B, 24(1), 2017, pp. 223-236.10.24200/sci.2017.4028
  34. 34. Singhal A.K., Athavale M.M., Li H., Jiang Y.: Mathematical basis and validation of the full cavitation model, J. Fluid Engineering, 124, 2002, pp. 617-624.10.1115/1.1486223
  35. 35. Vinayan V., Kinnas S.A.: A numerical nonlinear analysis of two-dimensional ventilating entry of surface-piercing hydrofoils with effects of gravity, J. Fluid Mech. 658, 2010, pp. 383–408.10.1017/S0022112010001783
  36. 36. Vinayan V. A Boundary Element Method for the Strongly Nonlinear Analysis of Ventilating Water-entry and Wave-body Interaction Problems. PhD thesis, Ocean Engineering Group, Architectural and Environmental Engineering, University of Texas at Austin, Austin, TX, USA, 2009.
  37. 37. Wang D.P.: Water entry and exit of a fully ventilated foil, J. Ship Res. 21 (1), 1977, pp. 44–68.10.5957/jsr.1977.21.1.44
  38. 38. Wang D.P.: Oblique water entry and exit of a fully ventilated foil, J. Ship Res, 23, 1979, pp. 43–54.10.5957/jsr.1979.23.1.43
  39. 39. Wang G., Zhu X., Sheng Z.: Hydrodynamic forces of a three-dimensional fully ventilated foil entering water. J. Hydrodynamics, 5(2), 1990.
  40. 40. Wu T.Y.: A Free-Streamline Theory for Two-Dimensional Fully Cavitated Hydrofoils, Mathematical Physics, 35, 1956, pp. 236–265.10.1002/sapm1956351236
  41. 41. Yim B.: An application of linearized theory to water entry and water exit problems. Part 2 with ventilation, Rep. 3171. NSRDC, Washington, DC, USA. 1969.
  42. 42. Yim B.: Linear theory on water entry and exit problems of a ventilating thin wedge, J. Ship Res. 18 (1), 1974, pp. 1–11.10.5957/jsr.1974.18.1.1
  43. 43. Young Y.L.: Numerical modeling of supercavitating and surface-piercing propellers, PhD thesis, Ocean Engineering Group, Department of Civil ?, University of Texas at Austin, Austin, TX, USA, 2002.
  44. 44. Young Y.L., Kinnas S.A.: Analysis of supercavitating and surface-piercing propeller flows via BEM, J. Computational Mechanics, 32, 2003, pp. 269-280.10.1007/s00466-003-0484-6
  45. 45. Young Y.L., Savander B.R.: Numerical analysis of large-scale surface-piercing propellers. J. Ocean Engineering, 38, 2011, pp. 1368-1381.10.1016/j.oceaneng.2011.05.019
  46. 46. Zwart P., Gerber A.G., Belamri T.: A Two-Phase Model for Predicting Cavitation Dynamics, ICMF International Conference on Multiphase Flow, Yokohama, Japan, 2004.
  47. 47. Plik : PMR-2016-00084 : 43230 zn. norm. [24 str], stan 2018-01-16, kor. ang. epw
DOI: https://doi.org/10.2478/pomr-2018-0003 | Journal eISSN: 2083-7429 | Journal ISSN: 1233-2585
Language: English
Page range: 33 - 43
Published on: Apr 11, 2018
Published by: Gdansk University of Technology
In partnership with: Paradigm Publishing Services
Publication frequency: 4 times per year

© 2018 Parviz Ghadimi, Nasrin Javanmardi, published by Gdansk University of Technology
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.