Have a personal or library account? Click to login
An Analysis of the Tvergaard Parameters at Low Initial Stress Triaxiality for S235JR Steel Cover

An Analysis of the Tvergaard Parameters at Low Initial Stress Triaxiality for S235JR Steel

Open Access
|Jan 2015

References

  1. 1. Abaqus 6.10. Analysis User's Manual, 2010, Dassault Systèmes Simulia Corporation, Providence.
  2. 2. Corigliano, A., Mariani, S. and Orsatti, B., 2000, “Identifcation of Gurson-Tvergaard material model parameters via Kalman fltering technique. I. Theory”, International Journal of Fracture, Vol. 104, No. 4, pp. 349-373.10.1023/A:1007602106711
  3. 3. Faleskog, J., Gao, X. and Shih, C.F., 1998, “Cell model for nonlinear fracture analysis – I. Micromechanics calibration”, International Journal of Fracture, Vol. 89, No. 4, pp. 355-373.10.1023/A:1007421420901
  4. 4. Gurson, A. L., 1977, “Continuum theory of ductile rupture by void nucleation and growth: Part I – Yield criteria and fow rules for porous ductile media”, Journal of Engineering Materials and Technology, Transactions of the ASME Vol. 99, No. 1, pp. 2-15.10.1115/1.3443401
  5. 5. Hancock, J.W. and Mackenzie, A. C., 1976, “On the mechanisms of ductile failure in high-strength steels subjected to multi-axial stress-states”, Journal of Mechanics and Physics of Solids, Vol. 24, No. 2-3, pp. 147-160.10.1016/0022-5096(76)90024-7
  6. 6. Kossakowski, P.G., 2010, “A n analysis of the load-carrying capacity of elements subjected to complex stress states with a focus on the microstructural failure”, Archives of Civil and Mechanical Engineering, Vol. 10, No. 2, pp. 15-39.10.1016/S1644-9665(12)60048-X
  7. 7. Kossakowski, P.G., 2012a, “Simulation of ductile fracture of S235JR steel using computational cells with microstructurally-based length scales”, Journal of Theoretical and Applied Mechanics, Vol. 50, No. 2, pp. 589-607.
  8. 8. Kossakowski, P.G., 2012b, “Prediction of ductile fracture for S235JR steel using the Stress Modifed Critical Strain and Gurson-Tvergaard-Needleman models”, Journal of Materials in Civil Engineering, Vol. 24, No. 12, pp. 1492-1500.10.1061/(ASCE)MT.1943-5533.0000546
  9. 9. Kossakowski, P.G., Trąmpczyński, W., 2012, “Microvoids evolution in S235JR steel subjected to multi-axial stress state”, Engineering Transactions, Vol. 60, No. 4, pp. 287– 314.
  10. 10. Kossakowski, P.G., 2012c, “Infuence of initial porosity on strength properties of S235JR steel at low stress triaxiality”, Archives of Civil Engineering, Vol. 58, No. 3, pp. 293-308.10.2478/v.10169-012-0017-9
  11. 11. Kossakowski, P.G., 2012d, “Efect of initial porosity on material response under multi-axial stress states for S235JR steel”, Archives of Civil Engineering, Vol. 58, No. 4, pp. 445-462.10.2478/v.10169-012-0024-x
  12. 12. Kossakowski, P.G., 2012e, “The analysis of Tvergaard's parameters of S235JR steel in high triaxiality”, Advances in Material Science, Vol. 12, No. 1, pp. 27-35.10.2478/v10077-012-0003-6
  13. 13. Nahshon, K. and Hutchinson, J.W., 2008, “Modifcation of the Gurson Model for shear failure”, European Journal of Mechanics - A/Solids, Vol. 27, No.1, pp. 1-17.10.1016/j.euromechsol.2007.08.002
  14. 14. Needleman, A. and Tvergaard, V., 1984, “A n analysis of the ductile rupture in notched bars”, Journal of the Mechanics and Physics of Solids, Vol. 32, No. 6, pp. 461-490.10.1016/0022-5096(84)90031-0
  15. 15. PN-EN 10002-1, 2004, Metallic materials – Tensile testing – Part 1: Method of test at ambient temperature, Polish Committee for Standardization, Warsaw.
  16. 16. PN-EN 1993-1-10, 2005, Eurocode 3 – Design of steel structures – Part 1: Material toughness and through-thickness properties, Polish Committee for Standardization, Wa rs a w.
  17. 17. Richelsen, A. B. and Tvergaard V., 1994, “Dilatant plasticity or upper bound estimates for porous ductile solids”, Acta Metallurgica et Materialia, Vol. 42, No. 8, pp. 2561-2577.10.1016/0956-7151(94)90198-8
  18. 18. Ruggieri, C., 2004, “Numerical investigation of constraint efects on ductile fracture in tensile specimens”, Journal of the Brazilian Society of Mechanical Sciences and Engineering, Vol. 26, No. 2, pp. 190-199.10.1590/S1678-58782004000200011
  19. 19. Sedlacek, G., Feldmann, M., Kühn, B., Tschickardt, D., Höhler, S., Müller, C., Hensen, W., Stranghöner, N. Dahl, W., Langenberg, P., Münstermann, S., Brozetti, J., Raoul, J., Pope, R. and Bijlaard, F., 2008, “Commentary and worked examples to EN 1993-1-10 “Material toughness and through thickness properties“ and other toughness oriented rules in EN 1993”, JRC Scientifc and Technical Reports, European Commission Joint Research Centre, Ofce for Ofcial Publications of the European Communities, Luxembourg.
  20. 20. Tvergaard, V., 1981, “Infuence of voids on shear band instabilities under plane strain conditions”, International Journal of Fracture, Vol. 17, No. 4, pp. 389-407.10.1007/BF00036191
  21. 21. Tvergaard, V., 1989, “Material failure by void growth to coalescence”, Advanced in Applied Mechanics, Vol. 27, pp. 83-151.10.1016/S0065-2156(08)70195-9
  22. 22. Tvergaard, V. and Needleman, A., 1984, “Analysis of the cup-cone fracture in a round tensile bar”, Acta Metallurgica, Vol. 32, No. 1, pp. 157-169.10.1016/0001-6160(84)90213-X
DOI: https://doi.org/10.2478/pomr-2014-0046 | Journal eISSN: 2083-7429 | Journal ISSN: 1233-2585
Language: English
Page range: 100 - 107
Published on: Jan 31, 2015
Published by: Gdansk University of Technology
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2015 Paweł G. Kossakowski, published by Gdansk University of Technology
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.