References
- Ābele, A. (2017) Apses (Populus tremula L.) koksnes garenzāģēšanas zāģripu griežņu nodilums un tā prognozēšana (Aspen (Populus Tremula L.) Wood Longitudinal Sawing, Ripsaw Blade Carbide Tip Bluntness and its Prediction). Unpublished doctoral dissertation, Latvia University of Life Sciences and Technologies, Jelgava, Latvia (in Latvian; Summary in Latvian and English)
- Barcík, Š., Pivolusková, E., & Kminiak, R. (2008) Effect of technological parameters and wood properties on cutting power in plane milling of juvenile poplar wood. Drvna Industrija, 59(3), 107-112.
- Berger, G., Barbu, M.C., Huber, H., Berger, J., & Schwarzmann, G. (2016) Applying biomimicry in lightweight wood panel development. World conference on timber engineering 2016. Retrieved November 27, 2025, from https://repositum.tuwien.at/handle/20.500.12708/172
- Elloumi, I., Hernández, R.E., Cáceres, C.B., & Blais, C. (2023) Effects of log temperature, moisture content, and cutting width on energy requirements for processing logs by a chipper–canter. Wood Material Science and Engineering, 18(2), 394–401. DOI: 10.1080/17480272.2022.2037705.
- Fekiač, J., Svoreň, J., Gáborík, J., & Němec, M. (2022) Reducing the Energy Consumption of Circular Saws in the Cutting Process of Plywood. Coatings, 12(1). DOI: 10.3390/coatings12010055.
- Freud (n.d.). Circular saw blades for solid wood. Retrieved September 29, 2025, from https://www.freudtools.com/worldwide/en/products/circular-saw-blades/stationary-machine/solid-wood/lm04.html
- Iejavs, J. (2025) Properties and the possibilities for improvement of pine (Pinus sylvestris L.) cellular wood material performance. Ph.D. thesis, Latvia University of Life Sciences and Technologies, Jelgava, Latvia152 p.
- Iejavs, J., & Spulle, U. (2016) Cellular wood material properties – rewiev. Drewno–Wood. Poznan: Institut Technologii Drewno, Vol. 59, No. 198, p. 5–18.
- Ispas, M., Răcășan, S., Bedelean, B., & Angelescu, A-M. (2025) Integration of ANN and RSM to Optimize the Sawing Process of Wood by Circular Saw Blades. Applied Sciences (Switzerland), 15(18). DOI: 10.3390/app151810206.
- Ivanovskiy, V. (2021) Improving the quality of the band saw cut. IOP Conference Series: Earth and Environmental Science, 875(1). DOI: 10.1088/1755-1315/875/1/012067.
- Jin, Q., Jin, Y., Dong, H., Wu, Z., Zhang, F., Wang, J., … Guo, X. (2025) Machining performance of thermally modified wood in milling processes. Materialwissenschaft und Werkstofftechnik, 56(3), 339–352. DOI: 10.1002/mawe.202300339.
- Koleda, P., Barcík, Š., & Nociarová, A. (2019) Effect of technological parameters of machining on energy efficiency in face milling of heat-treated Oak Wood. BioResources, 13(3), 6133–6146. DOI: 10.15376/biores.13.3.6133-6146.
- Koleda, P., Čuchor, T., Koleda, P., & Rajko, Ľ. (2024) Prediction Models for the Milling of Heat-Treated Beech Wood Based on the Consumption of Energy. Applied Sciences (Switzerland), 14(20). DOI: 10.3390/app14209539.
- Krilek, J., Čabalová, I., Výbohová, E., Mamoňová, M., Ťavodová, M., Melicherčík, J., … Giudice, V.L. (2024) Assessment of the chipping process of beech (Fagus sylvatica L.) wood: knives wear, chemical and microscopic analysis of wood. Wood Material Science and Engineering, 19(2), 473–484. DOI: 10.1080/17480272.2023.2259343
- Labans, E., & Kalnins, K. (2012) Numerical Modelling and Experimental Validation of Dendrolight Cellular Wood Material. Proceedings of the 8th Meeting “Northern European Network for Wood Science and Engineering (WSE)”. Lithuania, Kaunas, p. 177-184.
- Labans, E., Kalnins, K., & Bikovs, A. (2012) Simulation of Mechanical and Thermal Properties for Sandwich Panels with Cellular Wood Cores [tiešsaiste]. Scotland. Retrieved November 27, 2025, from http://webapp.tudelft.nl/proceedings/ect2012/pdf/labans.pdf
- Leadermac (n.d.). Our Products. Retrieved September 29, 2025, from https://www.leadermac.com/index.html
- Leitz (n.d.). Circular sawblades /Processing solid wood length. Retrieved September 29, 2025, from https://lexicon.leitz.org/en/product-categories/circular-sawblades/processing-solid-wood-length.html
- Leuco (n.d.). Gang-Rip Saw Blades. Retrieved September 29, 2025, from https://www.leuco.com/EN/US/Circular_Saw_Blades/Gang-Rip_Saw_Blades#?marketing1=1000113123&B31=3%2C2&typ=artikel&marketing2=1000113124
- Li, S., Wang, C., Zheng, L., Wang, Y., Xu, X., & Ding, F. (2016) Dynamic stability of cemented carbide circular saw blades for woodcutting. Journal of Materials Processing Technology, 238, 108-123. DOI: 10.1016/j.jmatprotec.2016.07.018.
- Marthy, M., & Cismaru I. (2009) Experimental study concerning the power consumption at the milling of pear wood. Pro Ligno, 5(3), 47-52.
- Merhar, M., Bjelić, A., & Hodžić, A. (2024) Modelling of Peripheral Wood Milling Power Using Design of Experiment Approach. Drvna Industrija, 75(4), 395–404. DOI: 10.5552/drvind.2024.0173.
- Nasir, V., & Cool, J. (2019) Optimal power consumption and surface quality in the circular sawing process of Douglas-fir wood. European Journal of Wood and Wood Products, 77(4), 609-617. DOI: 10.1007/s00107-019-01412-z.
- Nasir, V., Mohammadpanah, A., & Cool, J. (2020) The effect of rotation speed on the power consumption and cutting accuracy of guided circular saw: Experimental measurement and analysis of saw critical and flutter speeds. Wood Material Science and Engineering, 15(3), 140-146. DOI: 10.1080/17480272.2018.1508167.
- Nordström, J., & Bergström, J. (2001) Wear testing of saw teeth in timber cutting. Wear, 250-2151(1-12), 19-27. DOI: 10.1016/S0043-1648(01)00625-1.
- Pinkowski, G., Piernik, M., Wołpiuk, M., & Krauss, A (2024) Effect of Chip Thickness and Tool Wear on Surface Roughness and Cutting Power during Up-Milling Wood of Different Density. BioResources, 19(4), 9234-9248. DOI: 10.15376/BIORES.19.4.9234-9248.
- Roziņš, R., Brencis, R., Spulle, U., & Spulle-Meiere, I. (2023). Sound Absorption Properties of the Patented Wood, Lightweight Stabilised Blockboard. Rural Sustainability Research, 50(345), 59–66. DOI: 10.2478/plua-2023-0015.
- Roziņš, R., Vašuks, M., & Vašuks P. (2014a). Latvian Patent No. 14927A. Riga: Patent Office.
- Roziņš, R., Vašuks, M., & Vašuks P. (2014b). Latvian Patent No. 14929A. Riga: Patent Office.
- Tiryaki, S., Malkocoğlu, A., & Ozşahin, Ş. (2016) Artificial neural network modeling to predict optimum power consumption in wood machining. Instytut Technologii Drewna, 59(196), 109–125. DOI: 10.12841/wood.1644-3985.140.08.
- Tuherm, H., & Ābele, A. (2014) Koksnes griešanas procesi (Wood cutting processes). Jelgava: Latvijas Lauksaimniecības universitāte, Meža fakultāte. Studentu biedrība „Šalkone”. 90 lpp. (in Latvian)
