References
- Belete, T., Boyraz, N. (2017). Critical review on apple scab (Venturia inaequalis) biology, epidemiology, economic importance, management and defense mechanisms to the causal agent. Journal of Plant Physiology and Pathology, 5(2), 1–12.
- Biggs, A. R., Stensvand, A. (2014). Apple scab. In T. B. Sutton, H. S. Aldwinckle, A. M. Agnello, & J. F. Walgenbach (Eds.), Compendium of apple and pear diseases and pests (2nd ed., pp. 8–11). American Phytopathological Society Press.
- Bowen, J.K., Mesarich, C.H., Bus, V.G., Beresford, R.M., Plummer, K.M., Templeton, M.D. (2011). Venturia inaequalis: the causal agent of apple scab. Molecular Plant Pathology, 12, 105–122. DOI: 10.1111/j.1364-3703.2010.00656.x
- Carisse, O., Jobin, T., Bourgeois, G. (2007). Predicting apple leaf emergence from degree-day accumulation during the primary scab period. Canadian Journal of Plant Science, 88, 229–38.
- Carisse, O., Meloche, C., Boivin, G., Jobin, T. (2009). Action thresholds for summer fungicide sprays and sequential classification of apple scab incidence. Plant Disease, 93, 490–8. DOI: 10.1094/PDIS-93-5-0490
- Cox, K. D. (2015). Fungicide resistance in Venturia inaequalis, the causal agent of apple scab, in the United States. In H. Ishii & D. Hollomon (Eds.), Fungicide resistance in plant pathogens (pp. 433–447). Springer.
- Ekinci, K., Demircan, V., Atasay, A., Karamursel, D., Sarica, D. (2020). Energy, economic and environmental analysis of organic and conventional apple production in Turkey. Erwerbs-Obstbau, 62(1), 1–12. DOI: 10.1007/s10341-019-00462-0
- European Commission. (2020). A farm to fork strategy. https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A52020DC0381 (Retrieved August 26, 2024).
- Fiaccadori, R. (2018). In vitro, in vivo and in field sensitivity of Venturia inaequalis to anilinopyrimidine fungicides with different types of scab management and degree of control. Open Access Library Journal, 5(12), 1–13. DOI: 10.4236/oalib.1105092
- Fungicide Resistance Action Committee. (2024). FRAC code list 2024. https://www.frac.info/media/kufnaceb/frac-code-list-2024.pdf (Retrieved August 26, 2024).
- González-Domínguez, E., Armengol, J., Rossi, V. (2017). Biology and Epidemiology of Venturia Species Affecting Fruit Crops: A Review. Front. Plant Sci., 8, 1496. DOI: 10.3389/fpls.2017.01496
- Holb, I.J. (2005). Effect of pruning on apple scab in organic apple production. Plant Disease, 89, 611−618. DOI: 10.1094/PDIS.2004.88.7.751
- Holb, I. J., Fazekas, M., Abonyi, F., Lakatos, P., Thurzó, S., Nyéki, J., Szabó, Z., Kruppa, J.; Balla, B. (2009). Effect of reduced spray programmes on incidences of apple scab, powdery mildew and codling moth damage in environmentally friendly apple production systems. International Journal of Horticultural Science, 15(4), 75–78. DOI: 10.31421/IJHS/15/4/846
- Holb, I.J., Kunz, S. (2016). Integrated control of apple scab and powdery mildew in an organic apple orchard by combining potassium carbonates with wettable sulfur, pruning, and cultivar susceptibility. Plant Disease, 100: 1894−1905. DOI: 10.1094/PDIS-12-15-1416-RE
- Ilhan, K., Arslan, U., Karabulut, O. (2006). The effect of sodium bicarbonate alone or in combination with a reduced dose of tebuconazole on the control of apple scab. Crop Prot., 25(9), 963–967. DOI: 10.1016/j.cropro.2006.01.002
- Jamar, L., Lefrancq, B., Lateur, M. (2007). Control of apple scab (Venturia inaequalis) with bicarbonate salts under controlled environment. J. Plant Dis. Prot., 114, 221–227. DOI: 10.1007/BF03356221
- Jamar, L., Song, J., Fauche, F., Choi, J. & Lateur, M. (2018). Rainfastness of lime sulphur and other inorganic fungicides used for scab control in apple and pear production. IOBC-WPRS Bulletin, 23–28.
- Latvian Environment, Geology and Meteorology Centre. (2025). Climate of Latvia. https://videscentrs.lvgmc.lv/lapas/latvijas-klimats (Retrieved September 12, 2025)
- Majeed, M., Bhat, N.A., Badri, Z.A., Yousuf, V., Wani, T.A., Hassan, M., Saleem, Md., Dorjey, S., Paswal, S. (2017). Nonchemical management of apple scab - a global perspective. International Journal of Environment, Agriculture and Biotechnology (IJEAB), 2, 912−921.
- Orpet, R.J., Jones, V.P., Beers, E.H., Reganold, J.P., Goldberger, J.R., Crowder, D.W. (2020). Perceptions and outcomes of conventional vs. organic apple orchard management. Agriculture, Ecosystems Environment, 289, Article 106723. DOI: 10.1016/j.agee.2019.106723
- Paušič, A., Roškarič, M., Lešnik, M. (2023). Preharvest Treatments with Low-Risk Plant Protection Products Can Help Apple Growers Fulfil the Demands of Supermarket Chains Regarding Pesticide Residues and Marketing Apples under 0-Residue Brands. Agronomy, 13, 1151.
- Philion, V., Joubert, V., Trapman, M., Hjelkrem, A.R., Stensvand, A. (2019). Distribution of the Infection Time of Ascospores of Venturia inaequalis. Plant disease, 104(2), 465–473. DOI: 10.1094/PDIS-11-18-2046-RE
- Pole, V., Missa, I., Rubauskis, E., Kalva, E., Kalva, S. (2017). Effect of nitrogen fertiliser on growth and production of apples in the conditions of Latvia. Proceedings of the Latvian Academy of Sciences. Section B, 71, No. 3 (708), 115 – 120. DOI: 10.1515/prolas-2017-0020
- Rancāne, R., Valiuskaite, A., Stensvand, A. (2023a). Primary inoculum of Venturia inaequalis (Cooke) Wint. in its asexual form in apple – a review. Front. Hortic., 2, Article 1175956. DOI: 10.3389/fhort.2023.1175956
- Rancāne, R., Valiuškaitė, A., Zagorska, V., Komašilovs, V., Rasiukevičiūtė, N. (2023b). The Overall Environmental Load and Resistance Risk Caused by Long-Term Fungicide Use to Control Venturia inaequalis in Apple Orchards in Latvia. Plants, 12, 450. DOI: 10.3390/plants12030450
- Rozman, Č., Unuk, T., Pažek, K., Lešnik, M., Prišenk, J., Vogrin, A., & Tojnko, S. (2013). Multi criteria assessment of zero residue apple production. Erwerbs-obstbau, 55(2), 51–62.
- Rubauskis E., Udalovs D., Borisova I. (2022). Mechanical thinning improves the consistency of flowering and yield in apple production. Proceedings of the Latvian Academy of Sciences. Section B, 76(4), 543–550. DOI: 10.2478/prolas-2022-0084
- Rubauskis, E., Skrivele, M., Rezgale, Z., Ikase, L. (2011). Production of four apple cultivars on rootstock P 22. Sodininkystė ir Daržininkystė, 26(3). 3 – 14
- Skrivele, M., Dimza, I., Rubauskis, E. (2000). The cropping of nine apple cultivars as influenced by two different rootstocks. In Proceedings of the International Conference: Fruit Production and Fruit Breeding (pp. 100–103). Polli Horticultural Institute.
- Stević, M., Vukša, P., Elezović, I. (2010). Resistance of Venturia inaequalis to demethylation inhibiting (DMI) fungicides. Žemdirb. Agric., 97, 65–72.
- Stewart, K., Passey, T., Verheecke-Vaessen, C., Kevei, Z., Xu, X. (2023). Is it feasible to use mixed orchards to manage apple scab? Fruit Research, 3, 28. DOI: 10.48130/FruRes-2023-0028
- Tamm, L., Amsler, T., Schärer, H., Refardt, M. (2006). Efficacy of Armicarb (potassium bicarbonate) against scab and sooty blotch on apples. In Proceedings of the 12th International Conference on Cultivation Technique and Phytopathological Problems in Organic Fruit-Growing (pp. 87–92).
- Turan, C., Menghini, M., Gazzetti, K., Ceredi, G., Mari, M.; Collina, M. (2018). First identification of Venturia asperata from atypical scab-like symptoms in Italian apple orchards. European Journal of Plant Pathology, 153, 1325–1331.
- Uselis, N. (2006). Influence of rootstocks and planting schemes of apple tree cv. ‘Ligol’ on productivity and fruit quality. Sodininkystė ir Daržininkystė, 25(3), 151 – 157.
- Valiuškaitė, A., Uselis, N., Kviklys, D., Lanauskas, J., Rasiukevičiūtė, N. (2017). The effect of sustainable plant protection and apple tree management on fruit quality and yield. Zemdirbyste-Agriculture, 104, 353–358. DOI: 10.13080/z-a.2017.104.045
- Wightwick, A., Walters, R., Allinson, G., Reichman, S., & Menzies, N. (2010). Environmental risks of fungicides used in horticultural production systems. In O. Carisse (Ed.), Fungicides (pp. 273–304). InTechOpen. DOI: 10.5772/130322010.
