Have a personal or library account? Click to login
Sound Absorption Properties of the Patented Wood, Lightweight Stabilised Blockboard Cover

Sound Absorption Properties of the Patented Wood, Lightweight Stabilised Blockboard

Open Access
|Jan 2024

References

  1. Arzola-Villegas, X., Báez, C., Lakes, R., Stone, D.S., O’Dell, J., Shevchenko, P., Xiao, X., De Carlo, F. & Jakes, J.E. (2023). Convolutional Neural Network for Segmenting Micro-X-ray Computed Tomography Images of Wood Cellular Structures. Applied Sciences, 13, 8146-8161. DOI: 10.3390/app13148146.
  2. Bies, A.D. & Hansen, C.H. (2009). Engineering Noise Control: Theory and Practice. CRC Press: London.
  3. Bies, D.A., Hansen C. & Howard C. (2017). Engineering Noise Control, Fifth Edition. CRC Press: Boca Raton.
  4. Cao, L., Fu, Q., Si, Y., Ding, B. & Yu, J. (2018). Porous materials for sound absorption. Composites Communications, 10, 25–35. DOI: 10.1016/j.coco.2018.05.001.
  5. Dukarska, D., Walkiewicz, J., Derkowski, A. & Mirski, R. (2022). Properties of Rigid Polyurethane Foam Filled with Sawdust from Primary Wood Processing. Materials, 15, 5361-5379. DOI: 10.3390/ma15155361.
  6. European Committee for Standardization. (1993). European standard: Wood-based panels – Determination of moisture content. EN 322. Brussels.
  7. European Committee for Standardization. (1993). European standard: Wood-based panels – Determination of density. EN 323. Brussels.
  8. Guiman, M.V., Stanciu, M.D., Roșca, I.C., Georgescu, S.V., Năstac, S.M. & Câmpean, M. (2023). Influence of the Grain Orientation of Wood upon Its Sound Absorption Properties. Materials, 16, 5998-6014. DOI: 10.3390/ma16175998.
  9. International Organization for Standardization. (2000). International standard: Acoustics– Sound absorbers in buildings–Sound absorption parameters ISO 11654. Geneva.
  10. International Organization for Standardization. (2023). International standard: Acoustics Determination of acoustic properties in impedance tubes Part 2: Two-microphone technique for normal sound absorption coefficient and normal surface impedance. ISO 10534-2. Geneva.
  11. Cabinet of Ministers. (2015). Regulations Regarding Latvian Construction Standard. Building Acoustics. LBN 016-15. Riga.
  12. Long M. (2006). Architectural Acoustics, 1st edition. Academic Press: United Kingdom.
  13. Na, Y., Jeff, L., Johni, C. & Gilsoo, C. (2007). Sound Absorption Coefficients of Micro-Fiber Fabrics by Reverberation Room Method. Textile Research Journal, 77, 330-335. DOI: 10.1177/0040517507078743.
  14. Roziņš, R., Vašuks, M., & Vašuks P. (2014a). Latvian Patent No. 14927A. Riga: Patent Office.
  15. Roziņš, R., Vašuks, M., & Vašuks P. (2014b). Latvian Patent No. 14929A. Riga: Patent Office.
  16. Roziņš, R., Iejavs, J., Jakovļevs, V. & Spulle U. (2020). The properties of lightweight stabilised blockboard panels. Drewno, 63/206, 103-119. DOI: 10.12841/wood.1644-3985.334.02.
  17. Smardzewski, J., Kamisiński, T., Dziurka, D., Mirski, R., Majewski, A., Flach, A., & Pilch, A. (2015). Sound absorption of wood-based materials. Holzforschung, 69, 431-440. DOI: 10.1515/hf-2014-0114.
  18. Strazdiņš M. (2011). Study of Cellular Wood Panel Material Sound Absorption. Master Thesis, Jelgava, Latvia University of Agriculture, Forest Faculty.
  19. Thomas D. (2014). Handbook of Acoustics. 2nd edition.‎ Springer-Verlag Berlin Heidelberg: Berlin.
  20. Tiuc, A.E., Borlea, S.I., Nemeș, O., Vermeșan, H., Vasile, O., Popa, F. & Pințoi, R. (2022). New Composite Materials Made from Rigid/Flexible Polyurethane Foams with Fir Sawdust: Acoustic and Thermal Behavior. Polymers, 14, 3643-3464. DOI: 10.3390/polym14173643.
  21. Troja Ltd. (2023). Wall and ceiling panels. Retrieved November 21, 2023, from https://troja.lv/en/products/wall-and-ceiling-panels
  22. Wang, D., Peng, L., Zhu, G., Fu, F., Zhou, Y. & Song, B. (2014). Improving the Sound Absorption Capacity of Wood by Microwave Treatment. BioResources, 9(4), 7504-7518. DOI: 10.15376/biores.9.4.7504-7518.
  23. Veits, I. (2006). Metodiski norādījumi būvakustikā. Latvijas akustiķu apvienība. (Methodical instructions in building acoustics. Latvian Acoustics Association) (in Latvian)
  24. Yang, T., Hu, L., Xiong, X., Petrů, M., Noman, M.T., Mishra, R. & Militký, J. (2020). Sound Absorption Properties of Natural Fibers: A Review. Sustainability, 12, 8477-8502. DOI: 10.3390/su12208477.
  25. Yoshikawa, S. & Waltham, C. (2014). Woods for Wooden Musical Instruments. Proceedings of the International Symposium on Musical Acoustics, July 7-12, 2014 (281-286), Le Mans, French Acoustical Society. DOI: 10.13140/2.1.5067.1369.
  26. Zaharia, S.M., Pop, M.A., Cosnita, M., Croitoru, C., Matei, S. & Spîrchez, C. (2023). Sound Absorption Performance and Mechanical Properties of the 3D-Printed Bio-Degradable Panels. Polymers, 15, 3695-3715. DOI: 10.3390/polym15183695.
  27. Zhang, J., Shen, Y., Jiang, B. & Li, Y. (2018). Sound Absorption Characterization of Natural Materials and Sandwich Structure Composites. Aerospace, 5, 75-88. DOI: 10.3390/aerospace5030075.
Language: English
Page range: 59 - 66
Submitted on: Dec 1, 2023
Accepted on: Dec 15, 2023
Published on: Jan 22, 2024
Published by: Latvia University of Life Sciences and Technologies
In partnership with: Paradigm Publishing Services
Publication frequency: 2 issues per year

© 2024 Rihards Roziņš, Raitis Brencis, Uldis Spulle, Ivanda Spulle-Meiere, published by Latvia University of Life Sciences and Technologies
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.