Have a personal or library account? Click to login
Opportunities for Commercialization of High-Protein Barley: Case of New Variety ‘Kornelija’ Cover

Opportunities for Commercialization of High-Protein Barley: Case of New Variety ‘Kornelija’

Open Access
|Dec 2021

References

  1. Aarikka-Stenroos, L., Sandberg, B. (2012). From newproduct development to commercialization through networks. Journal of Business Research, 65(2), 198-206. DOI: 10.1016/j.jbusres.2011.05.023.10.1016/j.jbusres.2011.05.023
  2. Aarikka-Stenroos, L., Sandberg, B., & Lehtimäki, T. (2014). Networks for the commercialization of innovations: A review of how divergent network actors contribute. Industrial Marketing Management. 43(3), 365-381. DOI: 10.1016/j.indmarman.2013.12.005.10.1016/j.indmarman.2013.12.005
  3. Clément, T., Joya, R., Bresson, C., & Clément, C. (2018). Market developments and policy evaluation aspects of the plant protein sector in the EU. Brussels: Agrosynergie EEIG for the European Commission.
  4. Akhundjanov, S. B., Gallardo, R. K., & McCluskey, J. J., Rickard, B. J. (2019). Commercialization of a demandenhancing innovation: The release of a new apple variety by a public university. Economic Modelling. 86, 88-100. DOI: 10.1016/j.econmod.2019.06.004.10.1016/j.econmod.2019.06.004
  5. Arendt, E.K. & Zannini, E. (2013). Cereal grains for the food and beverage industries. Cambridge, UK: Woodhead Publishing Series.10.1533/9780857098924
  6. Auzins A., Krievina A., & Leimane I. (2019). Environmental Benefits from Shortening Soybean Meal Delivery Chain in Latvia. Ecology, Economics, Education and Legislation: International Multidisciplinary Scientific GeoConference-SGEM Proceedings, 19(5.3), 275-281. DOI: 10.5593/sgem2019/5.3/S21.035.10.5593/sgem2019/5.3/S21.035
  7. Baik, B.K. & Ullrich, S.E. (2008). Barley for food: Characteristics, improvement, and renewed interest. Journal of Cereal Science, 48(2), 233–242. DOI: 10.1016/j.jcs.2008.02.002.10.1016/j.jcs.2008.02.002
  8. Biel, W. & Jacyno, E. (2013). Chemical composition and nutritive value of spring hulled barley varieties. Bulgarian Journal of Agricultural Sciences, 19(4), 721-727. DOI: 10909510/721
  9. Bleidere, M. & Grunte, I. (2015). Kailgraudu vasaras miežu šķirnes ‘Kornelija’ saimnieciskais un graudu bioķīmiskais rasturojums (Economic and biochemical characteristics of hulless barley variety ‘Kornelija’). Zinātniski praktiskā konference “Līdzsvarota Lauksaimniecība” raksti. 192-195. lpp. (in Latvian)
  10. Bleidere, M., Zute, S., Brunava, L., Bobere, N., & Jākobsone, I. (2013b). Yield and grain quality of hulless spring barley in field trials under different nitrogen management conditions. Proceedings of the Latvian Academy of Sciences. Section B: Natural, Exact and Applied Sciences, 67(3), 229 - 235. DOI: 10.2478/prolas-2013-004010.2478/prolas-2013-0040
  11. Bleidere, M., Zute, S., & Jakobsone, I. (2013a). Characterisation of physical and biochemical traits of hulless spring barley grain in Latvian breeding program. Proceedings of the Latvian Academy of Sciences. Section B, 67(4), 399-404. DOI: 10.2478/prolas-2013-006510.2478/prolas-2013-0065
  12. European Commission (2018). Report from the Commission to the Council and the European Parliament on the development of plant proteins in the European Union. Brussels: European Commission.
  13. European Commission (2021). Plant-based foods in Europe: How big is the market? Smart Protein Plant-based Food Sector Report by Smart Protein Project, European Union’s Horizon 2020 research and innovation programme (No 862957). Retrieved October 20, 2021, from https://smartproteinproject.eu/plant-based-food-sector-report/.
  14. Havrlentova, M., Petrulakova, Z., Burgarova, A., Gago, F., Hlinkova, A., & Šturdík, E. (2011). β-glucans and their significance for the preparation of functional foods-a review. Czech Journal of Food Sciences, 29(1), 1-14. DOI: 10.17221/162/2009-CJFS10.17221/162/2009-CJFS
  15. Henchion, M., Hayes, M., Mullen, A., Fenelon, M., & Tiwari, B. (2017). Future protein supply and demand: strategies and factors influencing a sustainable equilibrium. Foods, 6 (7), Article No 53. DOI: 10.3390/foods607005310.3390/foods6070053553256028726744
  16. Hoehnel, A., Axel, C., Bez, J., Arendt, E. K., & Zannini, E. (2019). Comparative analysis of plant-based high-protein ingredients and their impact on quality of high-protein bread. Journal of Cereal Science, 89, Article No 102816. DOI: 10.1016/j.jcs.2019.102816.10.1016/j.jcs.2019.102816
  17. Janssen, M., Busch, C., Rödiger, M., & Hamm, U. (2016), Motives of consumers following a vegan diet and their attitudes towards animal agriculture. Appetite, 105, 643-651. DOI: 10.1016/j.appet.2016.06.03.
  18. Jenkins A.L., Jenkins D.J.A., Zdravkovic U., Wursch P., & Vuksan V. (2002). Depression of the glycaemic index by high levels of beta-glucan fiber in two functional foods tested in type 2 diabetes. European Journal of Clinical Nutrition, 56(7), 622–628. DOI: 10.1038/sj.ejcn.160136710.1038/sj.ejcn.160136712080401
  19. Lancashire P.D., Bleiholder H., Van Den Boom T., Langeluuddeke P., Strauss R., Webern E., Witzenberger A. (1991). A uniform decimal code for growth stages of crops and weed. Annals of Applied Biology, 119(3), 561-601. DOI: 10.1111/j.1744-7348.1991.tb04895.x10.1111/j.1744-7348.1991.tb04895.x
  20. Latvian Rural Advisory and Training Centre (LRAT) (2020, June). Lauksaimniecības bruto segumu aprēķini par 2019. gadu (Agricultural gross margin calculations for 2019). Retrieved April 22, 2020, from http://new.llkc.lv/lv/nozares/augkopiba-ekonomika-lopkopiba/sagatavoti-bruto-segumi-par-2019-gadu. (in Latvian)
  21. Leguizamón, A. (2014). Modifying Argentina: GM soy and socio-environmental change. Geoforum, 53, 149-160. DOI: 10.1016/j.geoforum.2013.04.001.10.1016/j.geoforum.2013.04.001
  22. Lin, D., Lu, W., Kelly, A. L., Zhang, L., Zheng, B., & Miao, S. (2017). Interactions of vegetable proteins with other polymers: Structure-function relationships and applications in the food industry. Trends in food science & technology, 68, 130-144. DOI: 10.1016/j.tifs.2017.08.006.10.1016/j.tifs.2017.08.006
  23. Macdougall, W.A.J. & Selvendran, R.R. (2001). Chemistry, architecture and composition of dietary fiber from plant cell walls. In Cho, S.S. & Dremer, M.L (Eds.), Handbook of Dietary Fiber (pp.281-319). New York: Marcell Dekker.
  24. Martinez-Ribaya, B. & Areal, F. J. (2020). Is there an opportunity for product differentiation between GM and non-GM soya-based products in Argentina? Food Control, 109, Article 106895. DOI: 10.1016/j.foodcont.2019.106895.10.1016/j.foodcont.2019.106895
  25. Menna, A. & Walsh, P. R. (2019). Assessing environments of commercialization of innovation for SMEs in the global wine industry: A market dynamics approach. Wine Economics and Policy, 8(2), 191-202. DOI: 10.1016/j.wep.2019.10.001.10.1016/j.wep.2019.10.001
  26. Mitsou, E.K., Panopoulou, N., Turunen, K., Spiliotis, V., & Kyriacou, A. (2010). Prebiotic potential of barley derived β-glucan at low intake levels: A randomised, double-blinded, placebo-controlled clinical study. Food Research International, 43(4), 1086-1092. DOI: 10.1016/j.foodres.2010.01.020.10.1016/j.foodres.2010.01.020
  27. Morrison, W.R. (1993). Barley lipids. In Macgregor, A.W. & Bhatty, R.S. (Eds.), Barley: Chemistry and Technology (pp.73-130). St Paul, MN: AACC International, Inc.,.
  28. Mellentin, J. (2019). Key Trends in Food, Nutrition Health 2020. London: New Nutrition Business.
  29. Öberg, C. & Shih, T. T. Y. (2014). Divergent and convergent logic of firms: Barriers and enablers for development and commercialization of innovations. Industrial Marketing Management, 43(3), 419-428. DOI: 10.1016/j.indmarman.2013.12.010.10.1016/j.indmarman.2013.12.010
  30. Paynter, B.H. & Harasymow, S.E. (2010). Variation in grain β-glucan due to site, cultivar and nitrogen fertiliser in Western Australia. Crop Pasture Science, 61(12), 1017-1026. DOI: 10.1071/CP1014610.1071/CP10146
  31. Shaveta, Kaur H., & Kaur S. (2019). Hulless barley: A new era of research for food purposes. Journal for Cereal Research, 11(2), 114-124. DOI:10.25174/2249-4065/2019/8371910.25174/2249-4065/2019/83719
  32. Sterna, V., Zute, S., & Jakobsone, I. (2015). Grain composition and functional ingredients of barley varieties created in Latvia. Proceedings of the Latvian Academy of Sciences, Section B, 69(4), 158-162. DOI:10.1515/prolas-2015-002310.1515/prolas-2015-0023
  33. Sterna, V., Zute S., Jansone I., & Kantane I. (2017). Chemical composition of covered and naked spring barley varieties and their potential for food production. Polish Journal of Food and Nutrition Sciences, 67(2), 151–155. DOI:10.1515/pjfns-2016-001910.1515/pjfns-2016-0019
  34. Sturite, I., Kronberga, A., Strazdina, V., Kokare, A., Aassveen, M., Kari A., & Olsen, B. (2019). Adaptability of hull-less barley varieties to different cropping systems and climatic conditions. Acta Agriculture Scandinavica, Section B — Soil & Plant Science, 69(1), 1-11. DOI: 10.1080/09064710.2018.148199510.1080/09064710.2018.1481995
  35. Peltonen-Sainio, P., Jauhiainen, L., & Nissilä, E. (2012). Improving cereal protein yields for high latitude conditions. European journal of agronomy, 39, 1-8. DOI: 10.1016/j.eja.2012.01.002.10.1016/j.eja.2012.01.002
  36. Rajala, A., Hakala, K., Mäkelä, P., & Peltonen‐Sainio, P. (2011). Drought effect on grain number and grain weight at spike and spikelet level in six‐row spring barley. Journal of Agronomy and Crop Science, 197(2), 103-112. DOI:10.1111/j.1439-037X.2010.00449.x10.1111/j.1439-037X.2010.00449.x
  37. Talke, K. & Hultink, E. J. (2010). Managing diffusion barriers when launching new products. Journal of Product Innovation Management, 27(4), 537-553. DOI: 10.1111/j.1540-5885.2010.00734.x10.1111/j.1540-5885.2010.00734.x
  38. Tamm, U, Jansone, I, Zute, S, & Jakobsone, I. (2015). Genetic and environmental variation of barley characteristics and the potential of local origin genotypes for food production. Proceedings of the Latvian Academy of Sciences. Section B. Natural, Exact, and Applied Sciences, 69, 163–169. DOI: 10.1515/prolas-2015-002410.1515/prolas-2015-0024
  39. Vink, C.J.A. & Delcour, J., A. (1996). Rye (Secale cereal L.) arabinoxylans: A critical review. Journal Cereal Sciences, 24(1), 1-14. DOI: 10.1006/jcrs.1996.003210.1006/jcrs.1996.0032
  40. World Health Organization & United Nations University. (2007). Protein and amino acid requirements in human nutrition. Geneva: World Health Organization. (Vol. 935, Issue 1)
  41. Wood, P.J. (2004). Relationships between solution properties of cereal b-glucans and physiological effects—a review. Trends in Food Science & Technology, 15(6), 313–320. DOI: 10.1016/j.tifs.2003.03.001.10.1016/j.tifs.2003.03.001
  42. Winger, R., & Wall, G. (2006). Food product innovation. Rome: Food and Agriculture Organization.
  43. Yu, Z., Nan, F., Wang, L. Y., Jiang, H., Chen, W., & Jiang, Y. (2019). Effects of high-protein diet on glycemic control, insulin resistance and blood pressure in type 2 diabetes: A systematic review and meta-analysis of randomized controlled trials. Clinical Nutrition, 39, 1724-1734. DOI: 10.1016/j.clnu.2019.08.008.10.1016/j.clnu.2019.08.00831466731
Language: English
Page range: 75 - 89
Submitted on: Aug 23, 2021
Accepted on: Nov 8, 2021
Published on: Dec 22, 2021
Published by: Latvia University of Life Sciences and Technologies
In partnership with: Paradigm Publishing Services
Publication frequency: 2 issues per year

© 2021 Alberts Auziņš, Ieva Leimane, Māra Bleidere, Vita Šterna, Agnese Krieviņa, published by Latvia University of Life Sciences and Technologies
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.