Have a personal or library account? Click to login

Impact of High-pressure Impregnation and Fire Protective Coatings on the Reaction to Fire Performance of Birch Plywood

Open Access
|Aug 2021

References

  1. Ali, S., Hussain, S.A.,Tohir, M.Z.M. (2019). Fire Test and Effects of Fire Retardant on the Natural Ability of Timber: A Review. Pertanika Journal of Science and Technology 27(2), P 867 – 895.
  2. Bekhta, P., Bryn, O., Sedliačik, J., and Novák, I. (2016). Effect of different fire retardants on birch plywood properties, Acta Facultatis Xylologiae Zvolen 58(1), 59-66. DOI: 10.17423/afx.2016.58.1.07.
  3. Bryn, O., Bekhta, P., Sedliačik, J., Forosz, V., Galysh, V. (2016) The effect of diffusive impregnation of birch veneers with fire retardant on plywood properties. Bioresources 11(4). DOI: 10.15376/biores.11.4.9112-9125.
  4. Bukšāns, E., (2010). Different factor influence on fire safety of wood materials and prediction of the reaction to fire. Phd Theis, Latvia University of Agriculture. 127 pp.
  5. Demir, A., Aydin, I., Salca, E. (2017). Some Technological Properties of Plywood after Fire Retardant Treatment in Different Concentrations. PRO LIGNO Vol.13 N 2 2017. P 40-45.
  6. EC Commission decision 2007/348 of 15 May 2007 amending Decision 2003/43/EC establishing the classes of reaction-to-fire performance for certain construction products as regards wood-based panels, Official Journal of the European Union. Retrieved September 30, 2020, from https://eur-lex.europa.eu/eli/dec/2007/348/oj.
  7. EN 13238:2010, Reaction to fire tests for building products – Conditioning procedures and general rules for selection of substrates. CEN/TC 127 Fire safety in buildings.
  8. EN 13501-1:2018, Fire classification of construction products and building elements - Part 1: Classification using data from reaction to fire tests. CEN/TC 127 Fire safety in buildings.
  9. EN 13823:2010, Reaction to fire tests for building products - Building products excluding floorings exposed to the thermal attack by a single burning item, CEN/TC 127 Fire safety in buildings.
  10. EN ISO 11925-2:2020, Reaction to fire tests - Ignitability of products subjected to direct impingement of flame, CEN/TC 127 Fire safety in buildings.
  11. Fanfarová, A., Makovická Osvaldová, L., Gašpercová, S. (2016). Testing of Fire Retardants. Applied Mechanics and Materials Vol. 861, pp 72-79. DOI: 10.4028/www.scientific.net/AMM.861.72.
  12. Grexa, O. (2000). Flame retardant treated wood products. In: The proceedings of Wood and Fire safety (part one). Technical university of Zvolen. Zvolen, 2000.
  13. Hu, L., Chen, Z., Fu, F., Fan, M. (2015). Investigation of Factory Fire Retardant Treatment of Eucalyptus Plywood. Forest Products Journal 65(7-8). DOI: 10.13073/FPJ-D-14-00020.
  14. Jiang, J., Li, J., Hu, J., Fan, D. (2010). Effect of nitrogen phosphorus flame retardants on thermal degradation of wood. Construction and Building Materials Vol. 24, Issue 12, December 2010, Pages 2633-2637.10.1016/j.conbuildmat.2010.04.064
  15. Kristoffersen, B., Hansen, A. (2004). Using the cone calorimeter for screening and control testing of fire retarded treated wood products. In: Proceedings of 10th international conference Interflam 2004: Vol. 2. Interscience communications Ltd. London. P.1397-1408.
  16. LeVan, S.L. (1984). Chemistry of fire retardancy. In: Rowell, R. M. (ed.). The chemistry of solid wood: Vol. 207. American Chemical Society. Washington, 1984. P.531-574.
  17. LeVan, S.L., Collet, M. (1989). Choosing and applying fire retardant treated plywood and lumber for roof designs: General Technical Report FPL-GTR-62. U.S. Department of Agriculture, Forest Service, Forest Products Laboratory. Madison, 11 p. DOI: https://doi.org/10.2737/FPL-GTR-62.
  18. Liodakis, S., Vorisis, D., Agiovlasitis, I.P. (2006). Testing the retardancy of various inorganic chemicals on smoldering combustion of Pinus halepensis needles. Thermochimica Acta. 444(2), 157-165. DOI: https://doi.org/10.1016/j.tca.2006.03.010.
  19. Mariappan, T. (2017). Fire Retardant Coatings In Book: New Technologies in Protective Coatings, edited by Carlos Giudice, Chapter 6, DOI: 10.5772/67675.
  20. Miljković, J., Grmuša, I., Điporović, M., KačarevićPopović, Z. (2005). The influence of fire retardants on the properties of beech and poplar veneers and plywood. Glasnik Sumarskog fakulteta 2005(92). DOI: 10.2298/GSF0592111M.
  21. Östman, B., Tsantaridis, L., Mikkola, E., Hakkarainen, T., Belloni, K., Brumer, H., & Piispanen, P. (2006). Innovative eco-efficient high fire performance wood products for demanding applications: Final report for Vinnova-Tekes project InnoFireWood. SP Rapport, No. 30. Retrieved September 30, 2020, from http://virtual.vtt.fi/virtual/inno-firewood/finalreport/sp_rapp_2006_30_innofirewood.pdf.
  22. Seo, H. J., Hwang, W., and Lee, M. C. (2017). Fire properties of Pinus densiflora utilizing fire-retardant chemicals based on borated and phosphorus (I) – combustion characteristics, BioRes. 12(3), 5417-5427. DOI: 10.15376/biores.12.3.5417-5427.
  23. Zhang, J., Delichatsios, MA, McKee, M., Ukleja, S. (2012). Experimental and numerical study of burning behaviors of flaxboard with intumescent coating and nanoparticles in the cone calorimeter and single burning item tests. Fire and Materials. 2012; 36: P 554-564.
Language: English
Page range: 65 - 75
Submitted on: Oct 5, 2020
Accepted on: May 5, 2021
Published on: Aug 11, 2021
Published by: Latvia University of Life Sciences and Technologies
In partnership with: Paradigm Publishing Services
Publication frequency: 2 issues per year

© 2021 Sanita Rudzīte, Edgars Bukšāns, published by Latvia University of Life Sciences and Technologies
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.