Have a personal or library account? Click to login
Quantifying Muscle Recovery: A Scoping Review of Existing Markers and Measurement Approaches Cover

Quantifying Muscle Recovery: A Scoping Review of Existing Markers and Measurement Approaches

Open Access
|Jul 2025

References

  1. Owens D.J., Twist C., Cobley J.N., Howatson G., Close G.L. (2019). Exercise-induced muscle damage: What is it, what causes it and what are the nutritional solutions? European Journal of Sport Science 19(1), 71-85. DOI: 10.1080/17461391.2018.1505957
  2. Dupuy O., Douzi W., Theurot D., Bosquet L., Dugué B. (2018). An evidence-based approach for choosing post-exercise recovery techniques to reduce markers of muscle damage, soreness, fatigue, and inflammation: A systematic review with meta-analysis. Frontiers in Physiology 9, 312968. DOI: 10.3389/fphys.2018.00403
  3. Peake J.M., Neubauer O., Gatta P.A.D., Nosaka K. (2017). Muscle damage and inflammation during recovery from exercise. Journal of Applied Physiology 122(3), 559-570. DOI: 10.1152/japplphysiol.00971.2016
  4. Clarkson P.M., Hubal M.J. (2002). Exercise-induced muscle damage in humans. American Journal of Physical Medicine & Rehabilitation 81(11), 52-69. DOI: 10.1097/00002060-200211001-00007
  5. Tee J.C., Bosch A.N., Lambert M.I. (2007). Metabolic consequences of exercise-induced muscle damage. Sports Medicine 37(10), 827-836. DOI: 10.2165/00007256-200737100-00001
  6. Brancaccio P., Lippi G., Maffulli N. (2010). Biochemical markers of muscular damage. Clinical Chemistry and Laboratory Medicine 48(6), 757-767. DOI: 10.1515/CCLM.2010.179
  7. Chalchat E., Gaston A.F., Charlot K., Peñailillo L., Valdés O. et al. (2022). Appropriateness of indirect markers of muscle damage following lower limbs eccentric-biased exercises: A systematic review with meta-analysis. Plos One 17(7), e0271233. DOI: 10.1371/journal.pone.0271233
  8. Baird M.F., Graham S.M., Baker J.S., Bickerstaff G.F. (2012). Creatine-kinase- and exercise-related muscle damage implications for muscle performance and recovery. Journal of Nutrition and Metabolism 2012, 960363. DOI: 10.1155/2012/960363
  9. Elustondo P.A., White A.E., Hughes M.E., Brebner K., Pavlov E., Kane D.A. (2013). Physical and functional association of lactate dehydrogenase (LDH) with skeletal muscle mitochondria. Journal of Biological Chemistry 288(35), 25309-25317. DOI: 10.1074/jbc.M113.476648
  10. Peake J.M., Suzuki K., Hordern M., Wilson G., Nosaka K., Coombes J.S. (2005). Plasma cytokine changes in relation to exercise intensity and muscle damage. European Journal of Applied Physiology 95(5-6), 514-521. DOI: 10.1007/S00421-005-0035-2
  11. Pillen S. (2010). Skeletal muscle ultrasound. European Journal of Translational Myology 20(4), 145-156. DOI: 10.4081/ejtm.2010.1812
  12. Pezzotta G., Querques G., Pecorelli A., Nani R., Sironi S. (2017). MRI detection of soleus muscle injuries in professional football players. Skeletal Radiology 46(11), 1513-1520. DOI: 10.1007/s00256-017-2729-z
  13. Nowak L., Reyes P.F. (2008). Muscle biopsy: A diagnostic tool in muscle diseases. Journal of Histotechnology 31(3), 101-108. DOI: 10.1179/his.2008.31.3.101
  14. Tricco A.C., Lillie E., Zarin W., O’Brien K.K., Colquhoun H. et al. (2018). PRISMA extension for scoping reviews (PRISMA-ScR): Checklist and explanation. Annals of Internal Medicine 169(7), 467-473. DOI: 10.7326/M18-0850
  15. Peters M.D., Godfrey C., McInerney P., Munn Z., Tricco A.C., Khalil H. (2024). Scoping reviews. In E. Aromataris, C. Lockwood, K. Porritt, B. Pilla, Z. Jordan (eds), JBI Manual for Evidence Synthesis. DOI: 10.46658/JBIMES-24-09
  16. Cooper S., Cant, R., Kelly, M., Levett-Jones, T., McKenna et al. (2019). An evidence-based checklist for improving scoping review quality. Clinical Nursing Research 30(3), 230-240. DOI:10.1177/1054773819846024
  17. Wilson L.J., Dimitriou L., Hills F.A., Gondek M.B., Cock-burn E. (2019). Whole body cryotherapy, cold water immersion, or a placebo following resistance exercise: a case of mind over matter? European Journal of Applied Physiology 119(1), 135-147. DOI: 10.1007/S00421-018-4008-7
  18. Medeiros F.V.A., Bottaro M., Martins W.R., Ribeiro D.L.F., Marinho E.B.A. et al. (2020). The effects of one session of roller massage on recovery from exercise-induced muscle damage: A randomized controlled trial. Journal of Exercise Science & Fitness 18(3), 148-154. DOI: 10.1016/j.jesf.2020.05.002
  19. Hüttel M., Golditz T., Mayer I., Heiss R., Lutter C. et al. (2020). Effects of pre- and post-exercise cold-water immersion therapy on passive muscle stiffness. Sportverletzung--Sportschaden 34(2), 72-78. DOI: 10.1055/a-0854-8302
  20. Wigernaes I., Hostmark A.T., Kierulf P., Stromme S.B. (2000). Active recovery reduces the decrease in circulating white blood cells after exercise. International Journal of Sports Medicine 21(8), 608-612. DOI: 10.1055/s-2000-8478
  21. Daab W., Bouzid M.A., Lajri M., Bouchiba M., Saafi M.A., Rebai H. (2021). Chronic beetroot juice supplementation accelerates recovery kinetics following simulated match play in soccer players. Journal of the American College of Nutrition 40(1), 61-69. DOI: 10.1080/07315724.2020.1735571
  22. Thompson D., Nicholas C.W., Williams C. (1999). Muscular soreness following prolonged intermittent high-intensity shuttle running. Journal of Sports Sciences 17(5), 387-395. DOI: 10.1080/026404199365902
  23. Lamb K.L., Ranchordas M.K., Johnson E.K., Denning J., Downing F., Lynn A. (2019). No effect of tart cherry juice or pomegranate juice on recovery from exercise-induced muscle damage in non-resistance trained men. Nutrients 11(7), 1593. DOI: 10.3390/nu11071593
  24. Waskiw-Ford M., Hannaian S., Duncan J., Kato H., Sawan S.A. et al. (2020). Leucine-enriched essential amino acids improve recovery from post-exercise muscle damage independent of increases in integrated myofibrillar protein synthesis in young men. Nutrients 12(4), 1061. DOI: 10.3390/nu12041061
  25. Howatson G., Hoad M., Goodall S., Tallent J., Bell P.G., French D.N. (2012). Exercise-induced muscle damage is reduced in resistance-trained males by branched chain amino acids: A randomized, double-blind, placebo controlled study. Journal of the International Society of Sports Nutrition 9(1), 1-7. DOI: 10.1186/1550-2783-9-20
  26. Adamczyk J.G., Krasowska I., Boguszewski D., Reaburn P. (2016). The use of thermal imaging to assess the effectiveness of ice massage and cold-water immersion as methods for supporting post-exercise recovery. Journal of Thermal Biology 60, 20-25. DOI: 10.1016/j.jtherbio.2016.05.006
  27. Chang W.G., Chen C.Y., Li W.F., Chou C.C., Liao Y.H. (2020). Traditional Chinese acupressure massage ameliorates systemic inflammatory responses and joint mobility limitation after acute repeated jumping exercise. Explore 16(1), 26-34. DOI: 10.1016/j.explore.2019.08.003
  28. Cipryan L. (2017). IL-6, antioxidant capacity and muscle damage markers following high-intensity interval training protocols. Journal of Human Kinetics 56(1), 139-148. DOI: 10.1515/hukin-2017-0031
  29. Crane J.D., Ogborn D.I., Cupido C., Melov S., Hubbard A. et al. (2012). Massage therapy attenuates inflammatory signaling after exercise-induced muscle damage. Science Translational Medicine 4(119), 119ra13. DOI: 10.1126/scitranslmed.3002882
  30. Missau E., Teixeira A. de O., Franco O.S., Martins C.N., Paulitsch F. da S. et al. (2018). Cold water immersion and inflammatory response after resistance exercises. Revista Brasileira de Medicina Do Esporte 24(5), 372-376. DOI: 10.1590/1517-869220182405182913
  31. Mackay K., González C., Zbinden-Foncea H., Peñailillo L. (2019). Effects of oral contraceptive use on female sexual salivary hormones and indirect markers of muscle damage following eccentric cycling in women. European Journal of Applied Physiology 119(11-12), 2733-2744. DOI: 10.1007/s00421-019-04254-y
  32. O’Fallon K.S., Kaushik D., Michniak-Kohn B., Dunne C.P., Zambraski E.J., Clarkson P.M. (2012). Effects of quercetin supplementation on markers of muscle damage and inflammation after eccentric exercise. International Journal of Sport Nutrition and Exercise Metabolism 22(6), 430-437. DOI: 10.1123/ijsnem.22.6.430
  33. Nasser N., Zorgati H., Chtourou H., Guimard A. (2023). Cold water immersion after a soccer match: Does the placebo effect occur? Frontiers in Physiology 14, 1062398. DOI: 10.3389/fphys.2023.1062398
  34. Kusmierczyk J., Wiecek M., Bawelski M., Szygula Z., Rafa--Zablocka K. et al. (2024). Pre-exercise cryotherapy reduces myoglobin and creatine kinase levels after eccentric muscle stress in young women. Frontiers in Physiology 15, 1413949. DOI: 10.3389/fphys.2024.1413949
  35. Hemmati H., Alkasasbeh W.J., Hemmatinafar M., Salesi M., Pirmohammadi S. et al. (2024). Effect of a honey-sweetened beverage on muscle soreness and recovery of performance after exercise-induced muscle damage in strength-trained females. Frontiers in Physiology 15, 1426872. DOI: 10.3389/fphys.2024.1426872
  36. Guilhem G., Hug F., Couturier A., Regnault S., Bournat L. et al. (2013). Effects of air-pulsed cryotherapy on neuromuscular recovery subsequent to exercise-induced muscle damage. The American Journal of Sports Medicine 41(8), 1942-1951. DOI: 10.1177/0363546513490648
  37. Krueger M., Costello J.T., Achtzehn S., Dittmar K.H., Mester J. (2019). Whole-body cryotherapy (−110°C) following high--intensity intermittent exercise does not alter hormonal, inflammatory or muscle damage biomarkers in trained males. Cytokine 113, 277-284. DOI: 10.1016/j.cyto.2018.07.018
  38. Krueger M., Costello J.T., Stenzel M., Mester J., Wahl P. (2020). The physiological effects of daily cold-water immersion on 5-day tournament performance in international standard youth field-hockey players. European Journal of Applied Physiology 120(1), 295-305. DOI: 10.1007/s00421-019-04274-8
  39. Martin-Arrowsmith P.W., Lov J., Dai J., Morais J.A., Churchward-Venne T.A. (2020). Ketone monoester supplementation does not expedite the recovery of indices of muscle damage after eccentric exercise. Frontiers in Nutrition 7, 607299. DOI: 10.3389/fnut.2020.607299
  40. Matos F., Neves E.B., Rosa C., Reis V.M., Saavedra F. et al. (2018). Effect of cold-water immersion on elbow flexors muscle thickness after resistance training. Journal of Strength and Conditioning Research 32(3), 756-763. DOI: 10.1519/JSC.0000000000002322
  41. Montgomery P.G., Pyne D.B., Cox A.J., Hopkins W.G., Minahan C.L., Hunt P. H. (2008). Muscle damage, inflammation, and recovery interventions during a 3-day basketball tournament. European Journal of Sport Science 8(5), 241-250. DOI: 10.1080/17461390802251844
  42. Nicol L.M., Rowlands D.S., Fazakerly R., Kellett J. (2015). Curcumin supplementation likely attenuates delayed onset muscle soreness (DOMS). European Journal of Applied Physiology 115(8), 1769-1777. DOI: 10.1007/s00421-015-3152-6
  43. Bell P.G., Stevenson E., Davison G.W., Howatson G. (2016). The effects of montmorency tart cherry concentrate supplementation on recovery following prolonged, intermittent exercise. Nutrients 8(7), 441. DOI: 10.3390/nu8070441
  44. Zhang X., Li X., Wu Z., Li X., Zhang G. (2024). Deciphering recovery paradigms: Foam rolling’s impact on DOMS and lactate dynamics in elite volleyball athletes. Heliyon 10(7), e29180. DOI: 10.1016/j.heliyon.2024.e29180
  45. Nie J., Tong T.K., George K., Fu F.H., Lin H., Shi Q. (2011). Resting and post-exercise serum biomarkers of cardiac and skeletal muscle damage in adolescent runners. Scandinavian Journal of Medicine & Science in Sports 21(5), 625-629. DOI: 10.1111/j.1600-0838.2010.01096.x
  46. James C., Dugan C.W., Boyd C., Fournier P.A., Arthur P.G. (2024). Temporal tracking of cysteine 34 oxidation of plasma albumin as a biomarker of muscle damage following a bout of eccentric exercise. European Journal of Applied Physiology 124(9), 2639-2650. DOI: 10.1007/s00421-024-05488-1
  47. Crameri R.M., Aagaard P., Qvortrup K., Langberg H., Olesen J., Kjær M. (2007). Myofibre damage in human skeletal muscle: effects of electrical stimulation versus voluntary contraction. The Journal of Physiology 583(1), 365-380. DOI: 10.1113/jphysiol.2007.128827
  48. Su Q.S., Tian Y., Zhang J.G., Zhang H. (2008). Effects of allicin supplementation on plasma markers of exercise--induced muscle damage, IL-6 and antioxidant capacity. European Journal of Applied Physiology 103(3), 275-283. DOI: 10.1007/s00421-008-0699-5
  49. Tseng C.Y., Lee J.P., Tsai Y.S., Lee S. Da, Kao C.L. et al. (2013). Topical cooling (Icing) delays recovery from eccentric exercise-induced muscle damage. Journal of Strength and Conditioning Research 27(5), 1354-1361. DOI: 10.1519/JSC.0b013e318267a22c
  50. Zhou Y., Li Y., Wang R. (2011). Evaluation of exercise-induced muscle damage by surface electromyography. Journal of Electromyography and Kinesiology 21(2), 356-362. DOI: 10.1016/j.jelekin.2010.09.009
  51. Hunter A.M., Galloway S.D.R., Smith I.J., Tallent J., Ditroilo M. et al. (2012). Assessment of eccentric exercise-induced muscle damage of the elbow flexors by tensiomyography. Journal of Electromyography and Kinesiology 22(3), 334-341. DOI: 10.1016/j.jelekin.2012.01.009
  52. Yamaguchi S., Inami T., Ishida H., Nagata N., Murayama M. et al. (2024). Bioimpedance analysis for identifying new indicators of exercise-induced muscle damage. Scientific Reports 14(1), 1-9. DOI: 10.1038/s41598-024-66089-8
  53. Poignard M., Guilhem G., Jubeau M., Martin E., Giol T. et al. (2023). Cold-water immersion and whole-body cryotherapy attenuate muscle soreness during 3 days of match-like tennis protocol. European Journal of Applied Physiology 123(9), 1895-1909. DOI: 10.1007/s00421-023-05190-8
  54. Rushall B.S. (1990). A tool for measuring stress tolerance in elite athletes. Journal of Applied Sport Psychology 2(1), 51-66. DOI: 10.1080/10413209008406420
  55. Kellmann M., Kölling S. (2019). Recovery and stress in sport. London: Routledge. DOI: 10.4324/9780429423857
  56. Hayes M.H. (1921). Experimental development of the graphic rating method. Psychological Bulletin 18, 98-99.
  57. Borg G.A.V. (1982). Psychophysical bases of perceived exertion. Medicine and Science in Sports and Exercise 14(5), 377-381.
  58. Shearer D.A., Sparkes W., Northeast J., Cunningham D.J., Cook C.J. Kilduff L.P. (1970). Measuring recovery: An adapted Brief Assessment of Mood (BAM+) compared to biochemical and power output alterations. Journal of Science and Medicine in Sport 20(5), 512-517. DOI: 10.1016/j.jsams.2016.09.012
  59. Magal M., Dumke C.L., Urbiztondo Z.G., Cavill M.J., Triplett N.T. et al. (2010). Relationship between serum creatine kinase activity following exercise-induced muscle damage and muscle fibre composition. Journal of Sports Sciences 28(3), 257-266. DOI: 10.1080/02640410903440892
  60. Traa W.A., Strijkers G.J., Bader D.L., Oomens C.W.J. (2019). Myoglobin and troponin concentrations are increased in early stage deep tissue injury. Journal of the Mechanical Behavior of Biomedical Materials 92, 50-57. DOI: 10.1016/j.jmbbm.2018.12.026
  61. Kim J.V., Wu G.Y. (2020). Body building and amino-transferase elevations: A review. Journal of Clinical and Translational Hepatology 8(2), 161-167. DOI: 10.14218/JCTH.2020.00005
  62. Rahimi M.H., Mohammadi H., Eshaghi H., Askari G., Miraghajani M. (2018). The effects of beta-hydroxy-beta--methylbutyrate supplementation on recovery following exercise-induced muscle damage: A systematic review and meta-analysis. Journal of the American College of Nutrition 37(7), 640-649. DOI: 10.1080/07315724.2018.1451789
  63. Sproston N.R., Ashworth J.J. (2018). Role of C-reactive protein at sites of inflammation and infection. Frontiers in Immunology 9, 754. DOI: 10.3389/fimmu.2018.00754
  64. de Sousa C.A.Z., Sierra A.P.R., Martínez Galán B.S., Maciel J.F.de S., Manoel R. et al. (2021). Time course and role of exercise-induced cytokines in muscle damage and repair after a marathon race. Frontiers in Physiology 12, 752144. DOI: 10.3389/fphys.2021.752144
  65. Luchting B., Hinske L.C.G., Rachinger-Adam B., Celi L.A., Kreth S., Azad S.C. (2017). Soluble intercellular adhesion molecule-1: A potential biomarker for pain intensity in chronic pain patients. Biomarkers in Medicine 11(3), 265-276. DOI: 10.2217/bmm-2016-0246
  66. Kozakowska M., Pietraszek-Gremplewicz K., Jozkowicz A., Dulak J. (2016). The role of oxidative stress in skeletal muscle injury and regeneration: focus on antioxidant enzymes. Journal of Muscle Research and Cell Motility 36(6), 377-393. DOI: 10.1007/s10974-015-9438-9
  67. Wens S.C.A., Schaaf G.J., Michels M., Kruijshaar M.E., Van Gestel T.J.M. et al. (2016). Elevated plasma cardiac troponin t levels caused by skeletal muscle damage in pompe disease. Circulation: Cardiovascular Genetics 9(1), 6-13. DOI: 10.1161/circgenetics.115.001322
  68. Wu A.H.B. (2017). Release of cardiac troponin from healthy and damaged myocardium. Frontiers in Laboratory Medicine 1(3), 144-150. DOI: 10.1016/j.flm.2017.09.003
  69. Andelković M., Baralić I., Dordević B., Stevuljević J.K., Radivojević N. et al. (2015). Hematological and biochemical parameters in elite soccer players during a competitive half season. Journal of Medical Biochemistry 34(4), 460. DOI: 10.2478/jomb-2014-0057
DOI: https://doi.org/10.2478/pjst-2025-0007 | Journal eISSN: 2082-8799 | Journal ISSN: 1899-1998
Language: English
Page range: 3 - 13
Submitted on: Jan 12, 2025
Accepted on: May 20, 2025
Published on: Jul 5, 2025
Published by: University of Physical Education in Warsaw
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2025 Parveen Kumar, Rohit Rathee, Kuldeep Nara, Awadhesh Kumar Sirotariya, Naveen Sangwan, published by University of Physical Education in Warsaw
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.