Have a personal or library account? Click to login
Principal Component Analysis in the Study of the Structure of Decathlon at Different Stages of Sports Career Cover

Principal Component Analysis in the Study of the Structure of Decathlon at Different Stages of Sports Career

Open Access
|Dec 2022

References

  1. 1. Quercetani R. (2000). Athletics: a history of modern track and field athletics: men and women (1860-2000). Mediolan: SEP Editrice.
  2. 2. Shuravetzky E. (2008). Decathlon: An outline of the Australian coaching program. Modern Athlete and Coach 46(4), 25-28.
  3. 3. Tidow G. (2000). Challenge Decathlon – Barriers on the way to becoming the ‘King of Athletes’. New Studies in Athletics 15(2), 43-52.
  4. 4. Edouard P., Mori J.B., Samozino P. (2013). Maximal lower extremity power output changes during a decathlon. New Studies in Athletics 28(3/4), 19-37.
  5. 5. Schrader A. (2011). One discipline after another. Leichtathletiktraining 2, 46-53. [in German]
  6. 6. Vana Z. (2003). The training of the best decathletes. New Studies in Athletics 18(4), 15-30.
  7. 7. Hymans R., Matrahazi I. (2015). Progression of world best performances and IAAF approved world records. International Amateur Athletic Federation.
  8. 8. Poliszczuk W.D. (2001). Decathlon. Naukowyj Swit. [in Russian]
  9. 9. Bilić M., Balić A. (2015). Types of discipline decathlon functional dependences in relation to age and level of score achievements of the world most successful decathlons. Sport Science 8, 52-56.
  10. 10. Bilić M., Smajlovic N., Balić A. (2015). Contribution to discipline decathlon total score results in relation to decathlon age and result level. Acta Kinesiologica 9(1), 66-69.
  11. 11. Kabitsis C., Harahousou Y., Kioumourtzoglou E. (1992). A study on the best junior decathletes performances. Physical Education Review 15(2), 157-162.
  12. 12. Wimmer V., Fenske N., Pyrka P., Fahrmeir L. (2011). Exploring competition performance in decathlon using semi-parametric latent variable models. Journal of Quantitative Analysis in Sports 7(4), 1-19.10.2202/1559-0410.1307
  13. 13. Stemmler M., Baumler G. (2005). The detection of types among decathletes using Configural Frequency Analysis (CFA). Psychology Science 47(3/4), 447-466.
  14. 14. Pavlović R., Idrizović K. (2017). Factor analysis of world record holders in athletic decathlon. Sport Science 10(1), 109-116.
  15. 15. Bilić M. (2015). Determination of taxonomic type structures of top decathlon athletes. Acta Kinesiologica 9(Suppl. 1), 20-23.
  16. 16. Ertel S. (2011). Exploratory factor analysis revealing complex structure. Personality and Individual Differences 50, 196-200. DOI: 10.1016/j.paid.2010.09.026
  17. 17. Woolf A., Ansley L., Bidgood P. (2007). Grouping of decathlon disciplines. Journal of Quantitative Analysis in Sports 3(4). DOI: 10.2202/1559-0410.1057
  18. 18. Heazlewood T., Gahreman D., Lee J. (2014). The factor structure of the decathlon and heptathlon: implications for training strength, power, speed and endurance. Journal of Australian Strength and Conditioning 22(5), 161-166.
  19. 19. Park J., Zatsiorsky V.M. (2011). Multivariate statistical analysis of decathlon performance results in Olympic athletes (1988-2008). International Journal of Sport and Health Sciences 5(5), 779-782.
  20. 20. Chen C., Zhan B. (2017). Development trend of world men decathlon scores BP neural network analysis. 2016 National Convention on Sports Science of China, 01040. DOI: 10.1051/ncssc/201701040
  21. 21. World Athletics (2020). Stats zone. Retrieved 1 November, 2020 from: https://www.worldathletics.org/stats-zone.
  22. 22. Salmistu J. (2019). World decathlon rankings 1965-2018. Retrieved 9 November, 2020 from: http://www.decathlon2000.com.
  23. 23. Matthews P. (2013). Athletics 2013: The international track and field annual. York: SportsBooks.
  24. 24. Van Kuijen H. (1998). 1997 Annual Combined Events. Helmond.
  25. 25. Constantin C. (2014). Principal component analysis – A powerful tool in computing marketing information. Bulletin of the Transilvania University of Brasov. Series V: Economic Sciences 7(56), 25-30.
  26. 26. Hadi N.U., Abdullah N., Sentosa I. (2016). An easy approach to exploratory factor analysis: Marketing perspective. Journal of Educational and Social Research 6(1), 215-215. DOI: 10.5901/jesr.2016.v6n1p215
  27. 27. Abdi H., Williams L.J. (2010). Principal component analysis. WIREs Computational Statistics 2(4), 433-459. DOI: 10.1002/wics.101
  28. 28. Bishop C.M. (2006). Pattern recognition and machine learning. New York: Springer.
  29. 29. Härdle W.K., Simar, L. (2015). Applied multivariate statistical analysis. New York: Springer.10.1007/978-3-662-45171-7
  30. 30. James G., Witten D., Hastie T., Tibshirani R. (2013). An introduction to statistical learning. New York: Springer.10.1007/978-1-4614-7138-7
  31. 31. Kassambara A. (2017). Practical guide to principal component methods in R: PCA, M (CA), FAMD, MFA, HCPC, facto-extra. STHDA.
  32. 32. R Core Team. (2020). R: A language and environment for statistical computing. Technical report, R Foundation for Statistical Computing, Vienna, Austria.
  33. 33. Dziadek B., Iskra J., Przednowek K. (2016). The development of the sports careers of the best decathletes in the world and in Poland in the years 1985-2015. Polish Journal of Sport and Tourism 23(1), 7-13. DOI: 10.1515/pjst-2016-0002
  34. 34. Edelmann-Nusser J., Hohmann A., Henneberg B. (2002). Modeling and prediction of competitive performance in swimming upon neural networks. European Journal of Sport Science 2(2), 1-10. DOI: 10.1080/17461390200072201
  35. 35. O’Donoghue P. (2008). Principal components analysis in the selection of key performance indicators in sport. International Journal of Performance Analysis in Sport 8(3), 145-155. 10.1080/24748668.2008.1186845610.1080/24748668.2008.11868456
  36. 36. Lago-Ballesteros J., Lago-Peñas C. (2010). Performance in team sports: Identifying the keys to success in soccer. Journal of Human Kinetics 25, 85-91.10.2478/v10078-010-0035-0
  37. 37. Parma N., James N., Hearne G., Jones B. (2018). Using principal component analysis to develop performance indicators in professional rugby league. International Journal of Performance Analysis in Sport 18(6), 938-949. DOI: 10.1080/24748668.2018.1528525
  38. 38. TIBCO Software Inc. (2020). Data Science Textbook. Retrieved 11 November 2020, from: https://docs.tibco.com/data--science/textbook.
  39. 39. Jackson D.A. (1993). Stopping rules in principal components analysis: a comparison of heuristical and statistical approaches. Ecology 74(8), 2204-2214. DOI: 10.2307/1939574
  40. 40. Makaruk H., Porter M., Starzak M., Szymczak E. (2016). An examination of approach run kinematics in track and field jumping events. Polish Journal of Sport and Tourism 23(2), 82-87. DOI: 10.1515/pjst-2016-0009
  41. 41. Petrov V. (2004). Pole vault-the state of the art. New Studies in Athletics 19(3), 23-32.
  42. 42. Gudelj I., Zagorac N., Babić V. (2013). Influence of kinematic parameters on pole vault results in top juniors. Collegium Antropologicum 37(Suppl. 2), 25-30.
  43. 43. Dapena J. (2000). The high jump. In V.M. Zatsiorsky (ed.), Biomechanics in Sport. Oxford: Blackwell Science Ltd.
  44. 44. Isolehto J., Virmavirta M., Kyrolainen H., Komi P. (2007). Biomechanical analysis of the high jump at the 2005 IAAF World Championships in Athletics. New Studies in Athletics 22(2), 17-27.
  45. 45. Čoh M., Iskra J. (2012). Biomechanical studies of 110 m hurdle clearance technique. Sport Science 5(1), 10-14.
DOI: https://doi.org/10.2478/pjst-2022-0023 | Journal eISSN: 2082-8799 | Journal ISSN: 1899-1998
Language: English
Page range: 21 - 28
Submitted on: Jun 13, 2022
Accepted on: Oct 24, 2022
Published on: Dec 30, 2022
Published by: University of Physical Education in Warsaw
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2022 Bartosz Dziadek, Janusz Iskra, Wiesław Mendyka, Krzysztof Przednowek, published by University of Physical Education in Warsaw
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.