Have a personal or library account? Click to login
Modulation of Bone Metabolism Markers Following Low-Repetition and Light-Load Power Training in Postmenopausal Women: A Randomized Controlled Trial Cover

Modulation of Bone Metabolism Markers Following Low-Repetition and Light-Load Power Training in Postmenopausal Women: A Randomized Controlled Trial

Open Access
|Mar 2022

References

  1. 1. Daly R.M. (2017). Exercise and nutritional approaches to prevent frail bones, falls and fractures: an update. Climacteric 20(2), 119-124. DOI: 10.1080/13697137.2017.128689010.1080/13697137.2017.128689028286988
  2. 2. Sözen T., Özışık L., Başaran N.C. (2017). An overview and management of osteoporosis. European Journal of Rheumatology 4(1), 46-56. DOI: 10.5152/eurjrheum.2016.04810.5152/eurjrheum.2016.048533588728293453
  3. 3. Garnero P., Delmas P.D. (1999). Biochemical markers of bone turnover: clinical usefulness in osteoporosis. Annales de Biologie Clinique 57(2), 137-48. PMID: 10210740.
  4. 4. Nikel O., Poundarik A., Bailey S., Vashishth D. (2018). Structural role of osteocalcin and osteopontin in energy dissipation in bone. Journal of Biomechanics 80, 45-52. DOI: 10.1016/j.jbiomech.2018.08.01410.1016/j.jbiomech.2018.08.014618884230205977
  5. 5. Barry D.W., Kohrt W.M. (2007). Acute effects of 2 hours of moderate-intensity cycling on serum parathyroid hormone and calcium. Calcified Tissue International 80(6), 359-365. DOI: 10.1007/s00223-007-9028-y10.1007/s00223-007-9028-y17549534
  6. 6. Silva B.C., Bilezikian J.P. (2015). Parathyroid hormone: anabolic and catabolic actions on the skeleton. Current Opinion in Pharmacology 22, 41-50. DOI: 10.1016/j.coph.2015.03.00510.1016/j.coph.2015.03.005540708925854704
  7. 7. Gombos G.C., Bajsz V., Pék E., Schmidt B., Sio E. et al. (2016). Direct effects of physical training on markers of bone metabolism and serum sclerostin concentrations in older adults with low bone mass. BMC Musculoskelet Disorder 17, 254. DOI: 10.1186/s12891-016-1109-510.1186/s12891-016-1109-5489988827278385
  8. 8. Garnero P. (2014). New developments in biological markers of bone metabolism in osteoporosis. Bone 66, 46-55. DOI: 10.1016/j.bone.2014.05.01610.1016/j.bone.2014.05.01624909537
  9. 9. Gaudio A., Pennisi P., Bratengeier C. (2010). Increased sclerostin serum levels associated with bone formation and resorption markers in patients with immobilization-induced bone loss. The Journal of Clinical Endocrinology and Metabolism 95(5), 2248-2253. DOI: 10.1210/jc.2010-006710.1210/jc.2010-006720305005
  10. 10. Wen H.J., Huang T.H., Li T.L., Chong P.N., Ang B.S. (2017). Effects of short-term step aerobics exercise on bone metabolism and functional fitness in postmenopausal women with low bone mass. Osteoporosis International 28(2), 539-547. DOI: 10.1007/s00198-016-3759-410.1007/s00198-016-3759-427613719
  11. 11. Mohr M., Helge E.W., Petersen L.F. (2015). Effects of soccer vs swim training on bone formation in sedentary middle-aged women. European Journal of Applied Physiology 115(12), 2671-2679. DOI: 10.1007/s00421-015-3231-810.1007/s00421-015-3231-826255288
  12. 12. Janik M., Stuss M., Michalska-Kasiczak M., Jagier A., Sewerynek E. (2018). Effects of physical activity on sclerostin concentrations. Endokrynologia Polska 69(2), 142-149. DOI: 10.5603/EP.a2018.000810.5603/EP.a2018.000829465155
  13. 13. Nayoung A., Kijin K. (2016). Effects of 12-week exercise training on osteocalcin, high-sensitivity C-reactive protein concentrations, and insulin resistance in elderly females with osteoporosis. The Journal of Physical Therapy Science 28(8), 2227-2231. DOI: 10.1589/jpts.28.222710.1589/jpts.28.2227501156627630402
  14. 14. Alghadir A.H., Aly F.A., Gabr S.A. (2014). Effect of moderate aerobic training on bone metabolism indices among adult humans. Pakistan Journal of Medical Sciences 30(4), 840-844. DOI: 10.12669/pjms.304.462410.12669/pjms.304.4624412170925097528
  15. 15. Zilaei-Bouri S.H., Peeri M. (2015). The effect of exercise intensity on the response of some of adipocytokins and biochemical marker of bone in obese and overweight young female. Iranian Journal of Endocrinology and Metabolism 16(6), 426-32.
  16. 16. de Paula Gomes C.A.F., Politti F., de Souza Bacelar Pereira C., da Silva A.C.B., Dibai-Filho A.V. et al. (2020). Exercise program combined with electrophysical modalities in subjects with knee osteoarthritis: a randomised, placebo-controlled clinical trial. BMC Musculoskelet Disorder 21, 258.10.1186/s12891-020-03293-3717173032312265
  17. 17. Hamaguchi K., Kurihara T., Fujimoto M., Iemitsu M., Sato K. et al. (2017). The effects of low-repetition and light-load power training on bone mineral density in postmenopausal women with sarcopenia: a pilot study. BMC Geriatrics 17, 102. DOI: 10.1186/s12877-017-0490-810.1186/s12877-017-0490-8541413428464798
  18. 18. Jackson A.S., Pollock M.L., Ward A. (1985). Generalized equations for predicting body density of women. Medicine & Science in Sports & Exercise 2(3), 175-81. PMID: 7402053.
  19. 19. Bezerra L., Bottaro M., Reis V.M., Lima R.M., Soares S. et al. (2010). Effects of yoga on bone metabolism in postmenopausal women. Journal of Exercise Physiology Online 13(4), 58-65.
  20. 20. Ardawi M.S.M., Rouzi A.A., Qari M.H. (2012). Physical activity in relation to serum sclerostin, insulin-like growth factor-1, and bone turnover markers in healthy premenopausal women: a cross-sectional and a longitudinal study. The Journal of Clinical Endocrinology & Metabolism 97(10), 3691-3699. DOI: 10.1210/jc.2011-336110.1210/jc.2011-336122865898
  21. 21. Wieczorek-Baranowska A., Nowak A., Pilaczyńska-Szcześniak L. (2012). Osteocalcin and glucose metabolism in postmenopausal women subjected to aerobic training program for 8 weeks. Metabolism 61(4), 542-5. DOI: 10.1016/j.metabol.2011.08.01110.1016/j.metabol.2011.08.01122000586
  22. 22. Huovinen V., Ivaska K.K., Kiviranta R. (2016). Bone mineral density is increased after a 16-week resistance training intervention in elderly women with decreased muscle strength. European Journal of Endocrinology 175(6), 571-582. DOI: 10.1530/EJE-16-052110.1530/EJE-16-052127634943
  23. 23. Ghorbanian B., Barani A. (2017). The relationship between serum osteocalcin and PTH concentrations with glycemic, lipid and adiposity parameters subsequent 10-weeks of aerobic training in women with Type2 Diabetes. Journal of Health Promotion Management 6(3), 20-26.10.21859/jhpm-07013
  24. 24. Lombardi G., Ziemann E., Banfi G., Sabrina Corbetta S. (2020). Physical activity-dependent regulation of parathyroid hormone and calcium-phosphorous metabolism. International Journal of Molecular Sciences 21(15), 5388. DOI: 10.3390/ijms21155388.10.3390/ijms21155388743283432751307
  25. 25. Clarke B.L., Drake M.T. (2013). Clinical utility of serum sclerostin measurements. Bonekey Reports 2, 361. DOI: 10.1038/bonekey.2013.9510.1038/bonekey.2013.95393610924578825
DOI: https://doi.org/10.2478/pjst-2022-0004 | Journal eISSN: 2082-8799 | Journal ISSN: 1899-1998
Language: English
Page range: 20 - 24
Submitted on: Jun 8, 2021
Accepted on: Jan 8, 2022
Published on: Mar 17, 2022
Published by: University of Physical Education in Warsaw
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2022 Shila Nayebifar, Elham Ghasemi, published by University of Physical Education in Warsaw
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.