References
- 1. Daly R.M. (2017). Exercise and nutritional approaches to prevent frail bones, falls and fractures: an update. Climacteric 20(2), 119-124. DOI: 10.1080/13697137.2017.128689010.1080/13697137.2017.128689028286988
- 2. Sözen T., Özışık L., Başaran N.C. (2017). An overview and management of osteoporosis. European Journal of Rheumatology 4(1), 46-56. DOI: 10.5152/eurjrheum.2016.04810.5152/eurjrheum.2016.048533588728293453
- 3. Garnero P., Delmas P.D. (1999). Biochemical markers of bone turnover: clinical usefulness in osteoporosis. Annales de Biologie Clinique 57(2), 137-48. PMID: 10210740.
- 4. Nikel O., Poundarik A., Bailey S., Vashishth D. (2018). Structural role of osteocalcin and osteopontin in energy dissipation in bone. Journal of Biomechanics 80, 45-52. DOI: 10.1016/j.jbiomech.2018.08.01410.1016/j.jbiomech.2018.08.014618884230205977
- 5. Barry D.W., Kohrt W.M. (2007). Acute effects of 2 hours of moderate-intensity cycling on serum parathyroid hormone and calcium. Calcified Tissue International 80(6), 359-365. DOI: 10.1007/s00223-007-9028-y10.1007/s00223-007-9028-y17549534
- 6. Silva B.C., Bilezikian J.P. (2015). Parathyroid hormone: anabolic and catabolic actions on the skeleton. Current Opinion in Pharmacology 22, 41-50. DOI: 10.1016/j.coph.2015.03.00510.1016/j.coph.2015.03.005540708925854704
- 7. Gombos G.C., Bajsz V., Pék E., Schmidt B., Sio E. et al. (2016). Direct effects of physical training on markers of bone metabolism and serum sclerostin concentrations in older adults with low bone mass. BMC Musculoskelet Disorder 17, 254. DOI: 10.1186/s12891-016-1109-510.1186/s12891-016-1109-5489988827278385
- 8. Garnero P. (2014). New developments in biological markers of bone metabolism in osteoporosis. Bone 66, 46-55. DOI: 10.1016/j.bone.2014.05.01610.1016/j.bone.2014.05.01624909537
- 9. Gaudio A., Pennisi P., Bratengeier C. (2010). Increased sclerostin serum levels associated with bone formation and resorption markers in patients with immobilization-induced bone loss. The Journal of Clinical Endocrinology and Metabolism 95(5), 2248-2253. DOI: 10.1210/jc.2010-006710.1210/jc.2010-006720305005
- 10. Wen H.J., Huang T.H., Li T.L., Chong P.N., Ang B.S. (2017). Effects of short-term step aerobics exercise on bone metabolism and functional fitness in postmenopausal women with low bone mass. Osteoporosis International 28(2), 539-547. DOI: 10.1007/s00198-016-3759-410.1007/s00198-016-3759-427613719
- 11. Mohr M., Helge E.W., Petersen L.F. (2015). Effects of soccer vs swim training on bone formation in sedentary middle-aged women. European Journal of Applied Physiology 115(12), 2671-2679. DOI: 10.1007/s00421-015-3231-810.1007/s00421-015-3231-826255288
- 12. Janik M., Stuss M., Michalska-Kasiczak M., Jagier A., Sewerynek E. (2018). Effects of physical activity on sclerostin concentrations. Endokrynologia Polska 69(2), 142-149. DOI: 10.5603/EP.a2018.000810.5603/EP.a2018.000829465155
- 13. Nayoung A., Kijin K. (2016). Effects of 12-week exercise training on osteocalcin, high-sensitivity C-reactive protein concentrations, and insulin resistance in elderly females with osteoporosis. The Journal of Physical Therapy Science 28(8), 2227-2231. DOI: 10.1589/jpts.28.222710.1589/jpts.28.2227501156627630402
- 14. Alghadir A.H., Aly F.A., Gabr S.A. (2014). Effect of moderate aerobic training on bone metabolism indices among adult humans. Pakistan Journal of Medical Sciences 30(4), 840-844. DOI: 10.12669/pjms.304.462410.12669/pjms.304.4624412170925097528
- 15. Zilaei-Bouri S.H., Peeri M. (2015). The effect of exercise intensity on the response of some of adipocytokins and biochemical marker of bone in obese and overweight young female. Iranian Journal of Endocrinology and Metabolism 16(6), 426-32.
- 16. de Paula Gomes C.A.F., Politti F., de Souza Bacelar Pereira C., da Silva A.C.B., Dibai-Filho A.V. et al. (2020). Exercise program combined with electrophysical modalities in subjects with knee osteoarthritis: a randomised, placebo-controlled clinical trial. BMC Musculoskelet Disorder 21, 258.10.1186/s12891-020-03293-3717173032312265
- 17. Hamaguchi K., Kurihara T., Fujimoto M., Iemitsu M., Sato K. et al. (2017). The effects of low-repetition and light-load power training on bone mineral density in postmenopausal women with sarcopenia: a pilot study. BMC Geriatrics 17, 102. DOI: 10.1186/s12877-017-0490-810.1186/s12877-017-0490-8541413428464798
- 18. Jackson A.S., Pollock M.L., Ward A. (1985). Generalized equations for predicting body density of women. Medicine & Science in Sports & Exercise 2(3), 175-81. PMID: 7402053.
- 19. Bezerra L., Bottaro M., Reis V.M., Lima R.M., Soares S. et al. (2010). Effects of yoga on bone metabolism in postmenopausal women. Journal of Exercise Physiology Online 13(4), 58-65.
- 20. Ardawi M.S.M., Rouzi A.A., Qari M.H. (2012). Physical activity in relation to serum sclerostin, insulin-like growth factor-1, and bone turnover markers in healthy premenopausal women: a cross-sectional and a longitudinal study. The Journal of Clinical Endocrinology & Metabolism 97(10), 3691-3699. DOI: 10.1210/jc.2011-336110.1210/jc.2011-336122865898
- 21. Wieczorek-Baranowska A., Nowak A., Pilaczyńska-Szcześniak L. (2012). Osteocalcin and glucose metabolism in postmenopausal women subjected to aerobic training program for 8 weeks. Metabolism 61(4), 542-5. DOI: 10.1016/j.metabol.2011.08.01110.1016/j.metabol.2011.08.01122000586
- 22. Huovinen V., Ivaska K.K., Kiviranta R. (2016). Bone mineral density is increased after a 16-week resistance training intervention in elderly women with decreased muscle strength. European Journal of Endocrinology 175(6), 571-582. DOI: 10.1530/EJE-16-052110.1530/EJE-16-052127634943
- 23. Ghorbanian B., Barani A. (2017). The relationship between serum osteocalcin and PTH concentrations with glycemic, lipid and adiposity parameters subsequent 10-weeks of aerobic training in women with Type2 Diabetes. Journal of Health Promotion Management 6(3), 20-26.10.21859/jhpm-07013
- 24. Lombardi G., Ziemann E., Banfi G., Sabrina Corbetta S. (2020). Physical activity-dependent regulation of parathyroid hormone and calcium-phosphorous metabolism. International Journal of Molecular Sciences 21(15), 5388. DOI: 10.3390/ijms21155388.10.3390/ijms21155388743283432751307
- 25. Clarke B.L., Drake M.T. (2013). Clinical utility of serum sclerostin measurements. Bonekey Reports 2, 361. DOI: 10.1038/bonekey.2013.9510.1038/bonekey.2013.95393610924578825