Have a personal or library account? Click to login
Bioelectrical Phase Angle, Muscle Damage Markers and Inflammatory Response After a Competitive Match in Professional Soccer Players Cover

Bioelectrical Phase Angle, Muscle Damage Markers and Inflammatory Response After a Competitive Match in Professional Soccer Players

Open Access
|Oct 2021

References

  1. 1. Brancaccio P., Lippi G., Maffulli N. (2020). Biochemical markers of muscular damage. Clinical Chemistry and Laboratory Medicine 48(6), 757-767. DOI: 10.1515/CCLM.2010.179.10.1515/CCLM.2010.17920518645
  2. 2. Chazaud B. (2016). Inflammation during skeletal muscle regeneration and tissue remodeling: application to exercise-induced muscle damage management. Immunology and Cell Biology 94(2), 140-145. DOI: 10.1038/icb.2015.97.10.1038/icb.2015.9726526620
  3. 3. Powers S.K., Jackson M.J. (2008). Exercise-induced oxidative stress: Cellular mechanisms and impact on muscle force production. Physiological Reviews 88(4), 1243-1276. DOI: 10.1152/physrev.00031.2007.10.1152/physrev.00031.2007290918718923182
  4. 4. Howatson G., van Someren K.A. (2008). The prevention and treatment of exercise-induced muscle damage. Sports Medicine 38(6), 483-503. DOI: 10.2165/00007256-200838060-00004.10.2165/00007256-200838060-0000418489195
  5. 5. Rojano D., Molina A., Moya H., Berral F.J. (2021). Tart cherry and pomegranate supplementations enhance recovery from exercise-induced muscle damage: a systematic review. Biology of Sport 38(1), 97-111. DOI: 10.5114/biol-sport.2020.97069.
  6. 6. Fernández-Lázaro D., Mielgo-Ayuso J., Seco J., Córdova A., Caballero A., Fernández-Lázaro C. (2020). Modulation of exercise-induced muscle damage, inflammation, and oxidative markers by curcumin supplementation in a physically active population: A systematic review. Nutrients 12(2), 501. DOI: 10.3390/nu12020501.10.3390/nu12020501707127932075287
  7. 7. Luti S., Modesti A., Modesti P.A. (2020). Inflammation, peripheral signals and redox homeostasis in athletes who practice different sports. Antioxidants (Basel) 9(11), 1065. DOI: 10.3390/antiox9111065.10.3390/antiox9111065769322133143147
  8. 8. Nowakowska A., Kostrzewa-Nowak D., Buryta R., Nowak R. (2019). Blood biomarkers of recovery efficiency in soccer players. International Journal of Environmental Research and Public Health 16(18), 3279. DOI: 10.3390/ijerph16183279.10.3390/ijerph16183279676588331500120
  9. 9. Nedelec M., McCall A., Carling C., Legall F., Berthoin S., Dupont G. (2012). Recovery in soccer: part I - post-match fatigue and time course of recovery. Sports Medicine 42(12), 997-1015. DOI: 10.2165/11635270-000000000-00000.10.2165/11635270-000000000-0000023046224
  10. 10. Varley M.C., Aughey R.J. (2013). Acceleration profiles in elite Australian soccer. International Journal of Sports Medicine 34(1), 34-39. DOI: 10.1055/s-0032-1316315.10.1055/s-0032-131631522895869
  11. 11. Andersson H., Ekblom B., Krustrup P. (2008). Elite football on artificial turf versus natural grass: movement patterns, technical standards, and player impressions. Journal of Sports Science 26(2), 113-122. DOI: 10.1080/02640410701422076.10.1080/0264041070142207617852688
  12. 12. Souglis A., Bogdanis G.C., Giannopoulou I., Papadopoulos Ch., Apostolidis N. (2015). Comparison of inflammatory responses and muscle damage indices following a soccer, basketball, volleyball and handball game at an elite competitive level. Research in Sports Medicine 23(1), 59-72. DOI: 10.1080/15438627.2014.975814.10.1080/15438627.2014.97581425630247
  13. 13. Ferreira J.C., Da Silva-Carvalho R.G., Moreira-Barroso T., Szmuchrowski L.A., Sledziewski D. (2011). Effect of different types of recovery on blood lactate removal after maximum exercise. Polish Journal of Sport and Tourism 18, 105-111. DOI: 10.2478/v10197-011-0008-4.10.2478/v10197-011-0008-4
  14. 14. Fatouros I.G., Chatzinikolaou A., Douroudos I.I., Nikolaidis M.G., Kyparos A. et al. (2010). Time-course of changes in oxidative stress and antioxidant status responses following a soccer game. Journal of Strength and Conditioning Research 24(12), 3278-3286. DOI: 10.1519/JSC.0b013e3181b60444.10.1519/JSC.0b013e3181b6044419996787
  15. 15. Silva J.R., Ascensao A., Marques F., Seabra A., Rebelo A., Magalhaes J. (2013). Neuromuscular function, hormonal and redox status and muscle damage of professional soccer players after a high-level competitive match. European Journal of Applied Physiology 113(9), 2193-2201. DOI: 10.1007/s00421-013-2633-8.10.1007/s00421-013-2633-823661147
  16. 16. Altarriba-Bartes A., Peña J., Vicens-Bordas J., Casals M., Peirau X., Calleja-González J. (2021). The use of recovery strategies by Spanish first division soccer teams: a cross-sectional survey. The Physician and Sportsmedicine 49(3), 297-307. DOI: 10.1080/00913847.2020.1819150.10.1080/00913847.2020.181915032882156
  17. 17. Deutz N.E.P., Ashurst I., Ballesteros M.D., Bear D.E., Cruz-Jentoft A.J. et al. (2019). The underappreciated role of low muscle mass in the management of malnutrition. Journal of the American Medical Directors Association 20(1), 22-27. DOI: 10.1016/j.jamda.2018.11.021.10.1016/j.jamda.2018.11.02130580819
  18. 18. Bosy-Westphal A., Danielzik S., Dörhöfer R.P., Later W., Wiese S., Müller M.J. (2006). Phase angle from bioelectrical impedance analysis: Population reference values by age, sex, and body mass index. Journal of Parenteral and Enteral Nutrition 30(4), 309-316. DOI: 10.1177/0148607106030004309.10.1177/014860710603000430916804128
  19. 19. Earthman C.P. (2015). Body composition tools for assessment of adult malnutrition at the bedside: a tutorial on research considerations and clinical applications. Journal of Parenteral and Enteral Nutrition 39(7), 787-822. DOI: 10.1177/0148607115595227.10.1177/014860711559522726287016
  20. 20. Koury J.C., Trugo N.M.F., Torres A.G. (2014). Phase angle and bioelectrical impedance vectors in adolescent and adult male athletes. International Journal of Sports Physiology and Performance 9(5), 798-804. DOI: 10.1123/ijspp.2013-0397.10.1123/ijspp.2013-039724414089
  21. 21. Norman K., Stobäus N., Pirlich M., Bosy-Westphal A. (2012). Bioelectrical phase angle and impedance vector analysis-clinical relevance and applicability of impedance parameters. Clinical Nutrition 31(6), 854-861. DOI: 10.1016/j. clnu.2012.05.008.
  22. 22. Gonzalez M.C., Barbosa-Silva T.G., Bielemann R.M., Gallagher D., Heymsfield S.B. (2016). Phase angle and its determinants in healthy subjects: influence of body composition. American Journal of Clinical Nutrition 103(3), 712-716. DOI: 10.3945/ajcn.115.116772.10.3945/ajcn.115.116772654622926843156
  23. 23. Mundstock E., Amaral M.A., Baptista R.R., Sarria E.E., Grecco R.R. et al. (2019). Association between phase angle from bioelectrical impedance analysis and level of physical activity: systematic review and meta-analysis. Clinical Nutrition 38(4), 1504-1510. DOI: 10.1016/j.clnu.2018.08.031.10.1016/j.clnu.2018.08.03130224304
  24. 24. Genton L., Mareschal J., Norman K., Karsegard V.L., Delsoglio M. et al. (2020). Association of phase angle and running performance. Clinical Nutrition ESPEN 37, 65-68. DOI: 10.1016/j.clnesp.2020.03.020.10.1016/j.clnesp.2020.03.02032359757
  25. 25. Levi-Micheli M., Pagani L., Marella M., Gulisano M., Piccoli A. et al. (2014). Bioimpedance and impedance vector patterns as predictors of league level in male soccer players. International Journal of Sports Physiology and Performance 9(3), 532-539. DOI: 10.1123/ijspp.2013-0119.10.1123/ijspp.2013-011923881291
  26. 26. Tomeleri C.M., Ribeiro A.S., Cavaglieri C.R., Deminice R., Schoenfeld B.J. et al. (2018). Correlations between resistance training-induced changes on phase angle and biochemical markers in older women. Scandinavian Journal of Medicine & Science in Sports 28(10), 2173-2182. DOI: 10.1111/sms.13232.10.1111/sms.1323229858504
  27. 27. Carobene A., Røraas T., Sølvik U.Ø., Sverresdotter M., Sand-berg S. et al. (2017). Biological variation estimates obtained from 91 healthy study participants for 9 enzymes in serum. Clinical Chemistry 63(6), 1141-1150. DOI: 10.1373/clinchem.2016.269811.10.1373/clinchem.2016.26981128428356
  28. 28. Carobene A., Aarsand A.K., Guerra E., Bartlett W.A., Coşkun A. et al. (2019). European Biological Variation Study (Eu-BIVAS): Within- and between-subject biological variation data for 15 frequently measured proteins. Clinical Chemistry 65(8), 1031-1041. DOI: 10.1373/clinchem.2019.304618.10.1373/clinchem.2019.30461831171528
  29. 29. Aziz N., Detels R., Quint J.J., Gjertson D., Ryner T., Butch A.W. (2019). Biological variation of immunological blood biomarkers in healthy individuals and quality goals for bio-marker tests. BMC Immunology 20, ID: 33. DOI: 10.1186/s12865-019-0313-0.10.1186/s12865-019-0313-0674470731521107
  30. 30. Coskun A., Carobene A., Kilercik M., Serteser M., Sandberg S. et al. (2018). Within-subject and between-subject biological variation estimates of 21 hematological parameters in 30 healthy subjects. Clinical Chemistry and Laboratory Medicine 56(8), 1309-1318. DOI: 10.1515/cclm-2017-1155.10.1515/cclm-2017-115529605821
  31. 31. Hopkins W., Marshall S., Batterham A., Hanin J. (2009). Progressive statistics for studies in sports medicine and exercise science. Medicine and Science in Sports and Exercise 41(1), 3-13. DOI: 10.1249/MSS.0b013e31818cb278.10.1249/MSS.0b013e31818cb27819092709
  32. 32. Beattie C.E., Fahey J.T., Pullinger S.A., Edwards B.J., Robertson C.M. (2021). The sensitivity of countermovement jump, creatine kinase and urine osmolality to 90-min of competitive match-play in elite English Championship football players 48-h post-match. Science and Medicine in Football 5(2), 165-173. DOI: 10.1080/24733938.2020.1828614.10.1080/24733938.2020.182861435077336
  33. 33. Ispiridilis I., Fatouros I.G., Jamurtas A.Z., Nikolaidis M.G., Michaidilis I. et al. (2008). Time-course of changes in inflammatory and performance responses following a soccer game. Clinical Journal of Sports Medicine 18(5), 423-431. DOI: 10.1097/JSM.0b013e3181818e0b.10.1097/JSM.0b013e3181818e0b18806550
  34. 34. Souglis A.G., Papapanagiotou A., Bogdanis G.C., Travlos A.K., Apostolidis N.G., Geladas N.D. (2015). Comparison of inflammatory responses to a soccer match between elite male and female players. Journal of Strength and Conditioning Research 29(5), 1227-1233. DOI: 10.1519/JSC.0000000000000767.10.1519/JSC.000000000000076725436628
  35. 35. Nescolarde L., Yanguas J., Lukaski H., Alomar X., Rosell-Ferrer J., Rodas G. (2013). Localized bioimpedance to assess muscle injury. Physiological Measurement 34(2), 237-245. DOI: 10.1088/0967-3334/34/2/237.10.1088/0967-3334/34/2/23723354019
  36. 36. Francavilla V.C., Bongiovanni T., Genovesi F., Minafra P., Francavilla G. (2015). Localized bioelectrical impedance analysis: How useful is it in the follow-up of muscle injury? A case report. Medicina dello Sport 68(2), 323-334.
  37. 37. Beberashvili I., Azar A., Sinuani I., Kadoshi H., Shapiro G. et al. (2014). Longitudinal changes in bioimpedance phase angle reflect inverse changes in serum IL-6 levels in maintenance hemodialysis patients. Nutrition 30(3), 297-304. DOI: 10.1016/j.nut.2013.08.017.10.1016/j.nut.2013.08.01724484680
DOI: https://doi.org/10.2478/pjst-2021-0014 | Journal eISSN: 2082-8799 | Journal ISSN: 1899-1998
Language: English
Page range: 8 - 13
Submitted on: Jul 16, 2021
Accepted on: Sep 19, 2021
Published on: Oct 28, 2021
Published by: Sciendo
In partnership with: Paradigm Publishing Services
Publication frequency: 4 times per year

© 2021 Heliodoro Moya-Amaya, Antonio Molina-López, Antonio Jesús Berralaguilar, Daniel Rojano-Ortega, Carlos Javier Berral-De La Rosa, Francisco José Berral-De La Rosa, published by Sciendo
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.