Have a personal or library account? Click to login

Asymmetry Indices in Female Runners as Predictors of Running Velocity

Open Access
|Mar 2020

References

  1. 1. Alday V., Frantz M. (2010). The effects of wind and altitude in the 400-m sprint with various IAAF track geometries. In J.A Gallian (ed.), Mathematics and sports (pp. 259-278). USA: The Mathematical Association of America.10.5948/UPO9781614442004.022
  2. 2. Ryan J.G., Harrison J.A. (2003). Technical adaptations of competitive sprinters induced by bend running. New Studies in Athletics 18(4), 57-67.
  3. 3. Churchill S.M., Salo A.I.T., Trewartha G. (2011). The effect of the bend on technique and performance during maximal speed sprinting. Portuguese Journal of Sport Sciences 11(2), 471-474.
  4. 4. Churchill S.M., Trewartha G., Bezodis I.N., Salo A.I.T. (2016). Force production during maximal effort bend sprinting: Theory vs reality. Scandinavian Journal of Medicine and Science in Sports 26(10), 1171-1179.10.1111/sms.1255926408499
  5. 5. Chang Y.H., Kram R. (2007). Limitations to maximum running speed on flat curves. The Journal of Experimental Biology 210, 971-982.10.1242/jeb.0272817337710
  6. 6. Viellehner J., Heinrich K., Funken J., Alt T., Potthast W. (2016). Lower extremity joint moments in athletics curve sprinting. In 34th International Conference on Biomechanics in Sports, July 2016 (pp. 1-4). Tsukuba, Japan.
  7. 7. Ishimura K., Sakurai S. (2016). Asymmetry in determinants of running speed during curved sprinting. Journal of Applied Biomechanics 32(4), 394-400.10.1123/jab.2015-012727046932
  8. 8. Beck O.N., Azua E.N., Grabowski A.M. (2018). Step time asymmetry increases metabolic energy expenditure during running. European Journal of Applied Physiology 118(10), 2147-2154.10.1007/s00421-018-3939-330027520
  9. 9. Brughelli M, Cronin J.C.A. (2011). Effects of running velocity on running kinetics and kinematics. Journal of Strength and Conditioning Research 25(4), 933-939.10.1519/JSC.0b013e3181c6430820703170
  10. 10. Morgan D.W., Martin P.E. (1989). Factors affecting running economy. Sports Medicine 7(5), 310-330.10.2165/00007256-198907050-000032662320
  11. 11. Nummela A., Keränen T., Mikkelsson L.O. (2007). Factors related to top running speed and economy. International Journal of Sports Medicine 28(8), 655-661.10.1055/s-2007-96489617549657
  12. 12. Kyrolainen H., Belli A., Komi P.V. (2001). Biomechanical factors affecting running economy. Medicine and Science in Sports and Exercise 33(8), 1330-1337.10.1097/00005768-200108000-0001411474335
  13. 13. Saunders P.U., Pyne D.B., Telford R.D., Hawley J.A. (2004). Factors affecting running economy in trained distance runners. Sports Medicine 34(7), 465-485.10.2165/00007256-200434070-0000515233599
  14. 14. Maćkała K., Fostiak M., Kowalski K. (2015). Selected determinants of acceleration in the 100-m sprint. Journal of Human Kinetics 45(1), 135-148.10.1515/hukin-2015-0014441582625964817
  15. 15. Struzik A., Konieczny G., Stawarz M., Grzesik K., Winiarski S., Rokita A. (2016). Relationship between lower limb angular kinematic variables and the effectiveness of sprinting during the acceleration phase. Applied Bionics and Biomechanics 2016, 1-9. DOI: dx.doi.org/10.1155/2016/16.10.1155/2016/7480709496952327516724
  16. Murphy A.J., Lockie R.G., Coutts A.J. (2003). Kinematic determinants of early acceleration in field sport athletes. Journal of Sports Science and Medicine 2, 144-150.
  17. 17. Lockie R.G., Jalilvand F., Callaghan S.J., Jeffriess M.D., Murphy A. J. (2015). Interaction between leg muscle performance and sprint acceleration kinematics. Journal of Human Kinetics 49(1), 65-74.10.1515/hukin-2015-0109472318326839607
  18. 18. Ogrodzka K., Niedźwiedzki T., Chwała W. (2011). Evaluation of the kinematic parameters of normal-paced gait in subjects with gonarthrosis and the influence of gonarthrosis on the function of the ankle joint and hip joint. Acta of Bioengineering and Biomechanics 13(3), 47-54.
  19. 19. Winiarski S., Czamara A. (2012). Evaluation of gait kinematics and symmetry during the first two stages of physiotherapy after anterior cruciate ligament reconstruction. Acta of Bioengineering and Biomechanics 14(2), 91-100.
  20. 20. Gombatto S.P., Brock T., DeLork A., Jones G., Madden E., Rinere C. (2015). Lumbar spine kinematics during walking in people with and people without low back pain. Gait Posture 42(4), 539-544.10.1016/j.gaitpost.2015.08.01026380913
  21. 21. Gilgen-Ammann R., Taube W., Wyss T. (2017). Gait asymmetry during 400- to 1000-m high-intensity track running in relation to injury history. International Journal of Sports Physiology and Performance 12, 157-160.10.1123/ijspp.2016-037927918678
  22. 22. Hernandez A., Gross K., Gombatto S. (2017). Differences in lumbar spine and lower extremity kinematics during a step down functional task in people with and people without low back pain. Clinical Biomechanics 47, 46-52.10.1016/j.clinbiomech.2017.05.01228600994
  23. 23. Robinson R.O., Herzog W., Nigg B.M. (1987). Use of force platform variables to quantify the effects of chiropractic manipulation on gait symmetry. Journal of Manipulative and Physiological Therapeutics 10, 172-176.
  24. 24. Herzog W., Nigg B.M., Read L.J., Olsson E. (1989). Asymmetries in ground reaction force patterns in normal human gait. Medicine and Science in Sports and Exercise 21(1), 110-114.10.1249/00005768-198902000-000202927295
  25. 25. Zifchock R.A., Davis I. (2008). Non-consecutive versus consecutive footstrikes as an equivalent method of assessing gait asymmetry. Journal of Biomechanics 41(1), 226-230.10.1016/j.jbiomech.2007.07.00317692321
  26. 26. Zifchock R.A., Davis I., Higginson J., Royer T. (2008). The symmetry angle: A novel, robust method of quantifying asymmetry. Gait Posture 27(4), 622–627.10.1016/j.gaitpost.2007.08.00617913499
  27. 27. Exell T., Irwin G., Gittoes M., Kerwin, D. (2017). Strength and performance asymmetry during maximal velocity sprint running. Scandinavian Journal of Medicine and Science in Sports 27(11), 1273-1282.10.1111/sms.1275927671707
  28. 28. Forczek W., Staszkiewicz R. (2012). Changes of kinematic gait parameters due to pregnancy. Acta of Bioengineering and Biomechanics 14(4), 113-119. DOI: 10.5277/abb120413.
  29. 29. Nigg S., Vienneau J., Maurer C., Nigg B.M. (2013). Development of a symmetry index using discrete variables. Gait and Posture 38(1), 115-119.10.1016/j.gaitpost.2012.10.02423218726
  30. 30. Van Dongen S. (2018). Human bodily asymmetry relates to behavioral lateralization and may not reliably reflect developmental instability. Symmetry 10(4), 1-7. DOI: 10.3390/sym10040117.10.3390/sym10040117
  31. 31. Drid P., Drapsin M., Trivic T., Lukač D., Obadov S., Milosevic Z. (2009). Asymmetry of muscle strength in elite athletes. Biomedical Human Kinetics 1, 3-5.10.2478/v10101-009-0002-1
  32. 32. Bailey C., Sato K., Alexander R., Chiang C., Stone M.H. (2013). Isometric force production symmetry and jumping performance in collegiate athletes. Journal of Trainology 2, 1-5.10.17338/trainology.2.1_1
  33. 33. Knapik J.J., Bauman C.L., Jones B.H., Harris J.M., Vaughan L. (1991). Preseason strength and flexibility imbalances associated with athletic injuries in female collegiate athletes. The American Journal of Sports Medicine 19(1), 76-81.10.1177/0363546591019001132008935
  34. 34. Delahunt E., Sweeney L., Chawke M., Kelleher J., Murphy K., Patterson, M., Prendiville A. (2012). Lower limb kinematic alterations during drop vertical jumps in female athletes who have undergone anterior cruciate ligament reconstruction. Journal of Orthopaedic Research 30(1), 72-78.10.1002/jor.2150421809380
  35. 35. Pappas E., Carpes F.P. (2012). Lower extremity kinematic asymmetry in male and female athletes performing jump-landing tasks. Journal of Science and Medicine in Sport 15(1), 87-92.10.1016/j.jsams.2011.07.00821925949
  36. 36. Doherty C., Bleakley C., Hertel J., Caulfield B., Ryan J., Sweeney K., Delahunt, E. (2015). Coordination and symmetry patterns during the drop vertical jump, 6 months after first-time lateral ankle sprain. Journal of Orthopaedic Research 33(10), 1537-1544.10.1002/jor.2291525940807
  37. 37. Jordan M.J., Aagaard P., Herzog W. (2015). Lower limb asymmetry in mechanical muscle function: A comparison between ski racers with and without ACL reconstruction. Scandinavian Journal of Medicine and Science in Sports 25(3), e301-e309.10.1111/sms.1231425212216
  38. 38. Radzak K.N., Putnam A.M., Tamura K., Hetzler R.K., Stickley C.D. (2017). Asymmetry between lower limbs during rested and fatigued state running gait in healthy individuals. Gait and Posture 51, 268-274.10.1016/j.gaitpost.2016.11.00527842295
  39. 39. Hunter S. K., Thompson M. W., Adams R. D. (2000). Relationships among age-associated strength changes and physical activity level, limb dominance, and muscle group in women. The Journals of Gerontology: Series A, Biological Sciences and Medical Sciences 55(6), 264-273.10.1093/gerona/55.6.B264
  40. 40. Perry M.C., Carville S.F., Smith I.C. H., Rutherford O.M., Newham D.J. (2007). Strength, power output and symmetry of leg muscles: Effect of age and history of falling. European Journal of Applied Physiology 100(5), 553-561.10.1007/s00421-006-0247-016847676
  41. 41. Kaufman K.R., Miller L.S., Sutherland D.H. (1996). Gait asymmetry in patients with limb-length inequality. Journal of Pediatric Orthopedics 16(2), 144-150.10.1097/01241398-199603000-00002
  42. 42. Laroche D.P., Cook S.B., MacKala K. (2012). Strength asymmetry increases gait asymmetry and variability in older women. Medicine and Science in Sports and Exercise 44(11), 2172-2181.10.1249/MSS.0b013e31825e1d31346364822617401
  43. 43. Caserotti P., Aagaard P., Simonsen E.B., Puggaard L. (2001). Contraction-specific differences in maximal muscle power during stretch-shortening cycle movements in elderly males and females. European Journal of Applied Physiology 84(3), 206-212.10.1007/s00421017000611320637
  44. 44. Jakobsen M.D., Sundstrup E., Randers M.B., Kjaer M., Andersen L.L., Krustrup P., Aagaard P. (2012). The effect of strength training, recreational soccer and running exercise on stretch-shortening cycle muscle performance during countermovement jumping. Human Movement Science 31(4), 970-986.10.1016/j.humov.2011.10.00122397814
  45. 45. Khurelbaatar T., Kim K., Lee S.K., Kim Y.H. (2015). Consistent accuracy in whole-body joint kinetics during gait using wearable inertial motion sensors and in-shoe pressure sensors. Gait and Posture 42(1), 65-69.10.1016/j.gaitpost.2015.04.00725957652
  46. 46. Robert-Lachaine X., Mecheri H., Larue C., Plamondon A. (2017). Validation of inertial measurement units with an optoelectronic system for whole-body motion analysis. Medical and Biological Engineering and Computing 55(4), 609-619.10.1007/s11517-016-1537-227379397
  47. 47. Perttunen J.R., Anttila E., Sodergard J., Merikanto J., Komi P.V. (2004). Gait asymmetry in patients with limb length discrepancy. Scandinavian Journal of Medicine and Science in Sports 14(1), 49-56.10.1111/j.1600-0838.2003.00307.x14723788
  48. 48. Gurney B., Mermier C., Robergs R., Gibson A., Rivero D. (2001). Effects of limb-length discrepancy on gait economy and lower-extremity muscle activity in older adults. Journal of Bone and Joint Surgery – Series A 83(6), 907-915.10.2106/00004623-200106000-0001311407800
  49. 49. Liu X.C., Fabry G., Molenaers G., Lammens J., Moens P. (1998). Kinematic and kinetic asymmetry in patients with leg-length discrepancy. Journal of Pediatric Orthopedics 18(2), 187-189.10.1097/01241398-199803000-00010
  50. 50. Gurney B. (2002). Leg length discrepancy – Review. Gait and Posture 15, 195-206.10.1016/S0966-6362(01)00148-5
  51. 51. Bredeweg S.W., Buist I., Kluitenberg B. (2013). Differences in kinetic asymmetry between injured and noninjured novice runners: A prospective cohort study. Gait and Posture 38(4), 847-85.10.1016/j.gaitpost.2013.04.01423673088
  52. 52. Exell T. (2010). Lower-limb biomechanical asymmetry in maximal velocity sprint running. Doctoral thesis, University of Wales.
  53. 53. Klimek A., Chwała, W. (2007). The evaluation of energy cost of effort and changes of centre of mass (COM) during race walking at starting speed after improving the length of lower extremities. Acta of Bioengineering and Biomechanics 9(2), 55-60.
  54. 54. Cavagna G.A. (2006). The landing-take-off asymmetry in human running. Journal of Experimental Biology 209(20), 4051-4060.10.1242/jeb.0234417023599
DOI: https://doi.org/10.2478/pjst-2019-0013 | Journal eISSN: 2082-8799 | Journal ISSN: 1899-1998
Language: English
Page range: 3 - 8
Submitted on: May 25, 2019
Accepted on: Aug 15, 2019
Published on: Mar 3, 2020
Published by: University of Physical Education in Warsaw
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2020 Piotr Tabor, Andrzej Mastalerz, Dagmara Iwańska, Olga Grabowska, published by University of Physical Education in Warsaw
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.