References
- Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global cancer statistics 2018: Globocan estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA: A Cancer Journal for Clinicians. 2018;68:394–424. doi:10.3322/CAAC.21492
- Fitzmaurice C, Abate D, et al. Global, Regional, and National Cancer Incidence, Mortality, Years of Life Lost, Years Lived With Disability, and Disability-Adjusted Life-Years for 29 Cancer Groups, 1990 to 2017. JAMA Oncol. 2019;5(12):1749. doi:10.1001/jamaoncol.2019.2996
- Zhang J, Li J, Xiong S, et al. Global burden of lung cancer: implications from current evidence. Ann Cancer Epidemiol. 2021;5:4-4. doi:10.21037/ace-20-31
- Tyldesley S, Boyd C, Schulze K, Walker H, Mackillop WJ. Estimating the need for radiotherapy for lung cancer: an evidence-based, epidemiologic approach. International Journal of Radiation Oncology*Biology*Physics. 2001;49(4):973-985. doi:10.1016/s0360-3016(00)01401-2
- Wei Z, Peng X, He L, Wang J, Liu Z, Xiao J. Treatment plan comparison of volumetric‐modulated arc therapy to intensity‐modulated radiotherapy in lung stereotactic body radiotherapy using either 6‐ or 10‐MV photon energies. J Applied Clin Med Phys. 2022;23(8). doi:10.1002/acm2.13714
- Ruysscher DD, Wauters E, Jendrossek V, et al. Diagnosis and treatment of radiation induced pneumonitis in patients with lung cancer: An ESTRO clinical practice guideline. Radiotherapy and Oncology. 2025;207:110837. doi:10.1016/j.radonc.2025.110837
- Kolilekas L, Costabel U, Tzouvelekis A, Tzilas V, Bouros D. Idiopathic interstitial pneumonia or idiopathic interstitial pneumonitis: what’s in a name? Eur Respir J. 2019;53(2):1800994. doi:10.1183/13993003.00994-2018
- Arroyo-Hernández M, Maldonado F, Lozano-Ruiz F, Muñoz-Montaño W, Nuñez-Baez M, Arrieta O. Radiation-induced lung injury: current evidence. BMC Pulm Med. 2021;21(1). doi:10.1186/s12890-020-01376-4
- Konkol M, Śniatała P, Milecki P. Radiation-induced lung injury — what do we know in the era of modern radiotherapy? Rep Pract Oncol Radiother. Published online March 31, 2022. doi:10.5603/rpor.a2022.0046
- Käsmann L, Dietrich A, Staab-Weijnitz CA, et al. Radiation-induced lung toxicity – cellular and molecular mechanisms of pathogenesis, management, and literature review. Radiat Oncol. 2020;15(1). doi:10.1186/s13014-020-01654-9
- Hu X, Bao Y, Xu Y, et al. Final report of a prospective randomized study on thoracic radiotherapy target volume for limited‐stage small cell lung cancer with radiation dosimetric analyses. Cancer. 2019;126(4):840-849. doi:10.1002/cncr.32586
- Hanania AN, Mainwaring W, Ghebre YT, Hanania NA, Ludwig M. Radiation-Induced Lung Injury. Chest. 2019;156(1):150-162. doi:10.1016/j.chest.2019.03.033
- Mayerhoefer ME, Materka A, Langs G, et al. Introduction to Radiomics. J Nucl Med. 2020;61(4):488-495. doi:10.2967/jnumed.118.222893
- Thomas R, Chen YH, Hatabu H, Mak RH, Nishino M. Radiographic patterns of symptomatic radiation pneumonitis in lung cancer patients: Imaging predictors for clinical severity and outcome. Lung Cancer. 2020;145:132-139. doi:10.1016/j.lungcan.2020.03.023
- Choi YW, Munden RF, Erasmus JJ, et al. Effects of Radiation Therapy on the Lung: Radiologic Appearances and Differential Diagnosis. RadioGraphics. 2004;24(4):985-997. doi:10.1148/rg.244035160
- Begosh-Mayne D, Kumar SS, Toffel S, Okunieff P, O’Dell W. The dose–response characteristics of four NTCP models: using a novel CT-based radiomic method to quantify radiation-induced lung density changes. Sci Rep. 2020;10(1). doi:10.1038/s41598-020-67499-0
- Schröder C, Engenhart-Cabillic R, Kirschner S, Blank E, Buchali A. Changes of lung parenchyma density following high dose radiation therapy for thoracic carcinomas – an automated analysis of follow up CT scans. Radiat Oncol. 2019;14(1). doi:10.1186/s13014-019-1276-2
- Bernchou U, Schytte T, Bertelsen A, Bentzen SM, Hansen O, Brink C. Time evolution of regional CT density changes in normal lung after IMRT for NSCLC. Radiotherapy and Oncology. 2013;109(1):89-94. doi:10.1016/j.radonc.2013.08.041
- Defraene G, La Fontaine M, van Kranen S, et al. Radiation-Induced Lung Density Changes on CT Scan for NSCLC: No Impact of Dose-Escalation Level or Volume. International Journal of Radiation Oncology*Biology*Physics. 2018;102(3):642-650. doi:10.1016/j.ijrobp.2018.06.038
- Palma DA, van Sörnsen de Koste J, Verbakel WFAR, Vincent A, Senan S. Lung Density Changes After Stereotactic Radiotherapy: A Quantitative Analysis in 50 Patients. International Journal of Radiation Oncology*Biology*Physics. 2011;81(4):974-978. doi:10.1016/j.ijrobp.2010.07.025
- Al Feghali KA, Wu Q (Charles), Devpura S, et al. Correlation of normal lung density changes with dose after stereotactic body radiotherapy (SBRT) for early stage lung cancer. Clinical and Translational Radiation Oncology. 2020;22:1-8. doi:10.1016/j.ctro.2020.02.004
- Ghobadi G, Wiegman EM, Langendijk JA, Widder J, Coppes RP, van Luijk P. A new CT-based method to quantify radiation-induced lung damage in patients. Radiotherapy and Oncology. 2015;117(1):4-8. doi:10.1016/j.radonc.2015.07.017
- Konkol M, Śniatała K, Śniatała P, Wilk S, Baczyńska B, Milecki P. Computer Tools to Analyze Lung CT Changes after Radiotherapy. Applied Sciences. 2021;11(4):1582. doi:10.3390/app11041582
- Konkol M, Bryl M, Fechner M, Matuszewski K, Śniatała P, Milecki P. Normal Lung Tissue CT Density Changes after Volumetric-Arc Radiotherapy (VMAT) for Lung Cancer. JPM. 2022;12(3):485. doi:10.3390/jpm12030485
- Palmeri F, Zerunian M, Polici M, et al. Virtual biopsy through CT imaging: can radiomics differentiate between subtypes of non-small cell lung cancer? Radiol med. 2025;130(9):1363-1372. doi:10.1007/s11547-025-02022-x
- Yang M, Shi L, Huang T, et al. Value of contrast-enhanced magnetic resonance imaging-T2WI-based radiomic features in distinguishing lung adeno-carcinoma from lung squamous cell carcinoma with solid components >8 mm. J Thorac Dis. 2023;15(2):635-648. doi:10.21037/jtd-23-142
- Gao S, Xu Z, Kang W, et al. Artificial intelligence-driven computer aided diagnosis system provides similar diagnosis value compared with doctors’ evaluation in lung cancer screening. BMC Med Imaging. 2024;24(1). doi:10.1186/s12880-024-01288-3
- Zhao W, Zou C, Li C, Li J, Wang Z, Chen L. Development of a diagnostic model for malignant solitary pulmonary nodules based on radiomics features. Ann Transl Med. 2022;10(4):201-201. doi:10.21037/atm-22-462
- Ogbonna CP, Breen WG, Le Noach P, et al. Radiomics-based Prediction of Local Recurrence after Stereotactic Body Radiation Therapy for Early-Stage Non–Small Cell Lung Cancer. Annals ATS. 2025;22(8):1236-1243. doi:10.1513/annalsats.202410-1047oc
- Salazar P, Cheung P, Ganeshan B, Oikonomou A. Predefined and data-driven CT radiomics predict recurrence-free and overall survival in patients with pulmonary metastases treated with stereotactic body radiotherapy. Faggioni L, ed. PLoS ONE. 2024;19(12):e0311910. doi:10.1371/journal. pone.0311910
- Jiang Z, Li Q, Ruan J, et al. Machine Learning-Based Prediction of Pathological Responses and Prognosis After Neoadjuvant Chemotherapy for Non– Small-Cell Lung Cancer: A Retrospective Study. Clinical Lung Cancer. 2024;25(5):468-478.e3. doi:10.1016/j.cllc.2024.04.006
- Wang F, Yang H, Chen W, et al. A combined model using pre-treatment CT radiomics and clinicopathological features of non-small cell lung cancer to predict major pathological responses after neoadjuvant chemoimmunotherapy. Current Problems in Cancer. 2024;50:101098. doi:10.1016/j.currproblcancer.2024.101098
- Park JA, Pham D, Wang H, Khandhar S, Weyant MJ, Suzuki K. Radiomic score is prognostic in clinical stage I lung adenocarcinoma ≤2 cm undergoing surgery. J Thorac Dis. 2024;16(10):6475-6482. doi:10.21037/jtd-24-923
- Niu Y, Jia HB, Li XM, et al. Deep learning radiomics and mediastinal adipose tissue-based nomogram for preoperative prediction of postoperative brain metastasis risk in non-small cell lung cancer. BMC Cancer. 2025;25(1). doi:10.1186/s12885-025-14466-5
- Muccini H, Vaidhyanathan K. Software Architecture for ML-based Systems: What Exists and What Lies Ahead. 2021 IEEE/ACM 1st Workshop on AI Engineering - Software Engineering for AI (WAIN). Published online May 2021:121-128. doi:10.1109/wain52551.2021.00026
- How to describe software architecture, https://wildasoftware.pl/post/how-describe-software-architecture, accessed: 2025-07-02
- Github - dagster-io/dagster: An orchestration platform for the devel-opment, production, and observation of data assets., https://github.com/dagsterio/dagster, accessed: 2025-07-02
- Mariadb foundation - mariadb.org, https://mariadb.org/, accessed: 2025-07-02
- Welcome to python.org, https://www.python.org/, accessed: 2025-07-02
- Lowekamp BC, Chen DT, Ibáñez L, Blezek D. The Design of SimpleITK. Front Neuroinform. 2013;7. doi:10.3389/fninf.2013.00045
- Heinrich HP, Jenkinson M, Brady M, Schnabel JA. MRF-Based Deformable Registration and Ventilation Estimation of Lung CT. IEEE Trans Med Imaging. 2013;32(7):1239-1248. doi:10.1109/tmi.2013.2246577
- Mani V, Selvaraj A. Survey of medical image registration, Journal of Biomedical Engineering and Technology. 2013;1:8-25
- Maintz JBA, Viergever MA. A survey of medical image registration. Medical Image Analysis. 1998;2(1):1-36. doi:10.1016/s1361-8415(01)80026-8
- Heinrich MP, Jenkinson M, Brady SM, Schnabel JA. Globally Optimal Deformable Registration on a Minimum Spanning Tree Using Dense Displacement Sampling. Lecture Notes in Computer Science. Published online 2012:115-122. doi:10.1007/978-3-642-33454-2_15
- Liu F, Yan K, Harrison AP, et al. SAME: Deformable Image Registration Based on Self-supervised Anatomical Embeddings. Lecture Notes in Computer Science. Published online 2021:87-97. doi:10.1007/978-3-030-87202-1_9
- Xu Z, Lee CP, Heinrich MP, et al. Evaluation of Six Registration Methods for the Human Abdomen on Clinically Acquired CT. IEEE Trans Biomed Eng. 2016;63(8):1563-1572. doi:10.1109/tbme.2016.2574816
- Hofmanninger J, Prayer F, Pan J, Röhrich S, Prosch H, Langs G. Automatic lung segmentation in routine imaging is primarily a data diversity problem, not a methodology problem. Eur Radiol Exp. 2020;4(1). doi:10.1186/s41747-020-00173-2
- Morar L, Băciuț G, Băciuț M, et al. Analysis of CBCT Bone Density Using the Hounsfield Scale. Prosthesis. 2022;4(3):414-423. doi:10.3390/prosthesis4030033