Have a personal or library account? Click to login
Tailored software for post-radiotherapy lung radiomics analysis Cover

Tailored software for post-radiotherapy lung radiomics analysis

Open Access
|Dec 2025

References

  1. Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global cancer statistics 2018: Globocan estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA: A Cancer Journal for Clinicians. 2018;68:394–424. doi:10.3322/CAAC.21492
  2. Fitzmaurice C, Abate D, et al. Global, Regional, and National Cancer Incidence, Mortality, Years of Life Lost, Years Lived With Disability, and Disability-Adjusted Life-Years for 29 Cancer Groups, 1990 to 2017. JAMA Oncol. 2019;5(12):1749. doi:10.1001/jamaoncol.2019.2996
  3. Zhang J, Li J, Xiong S, et al. Global burden of lung cancer: implications from current evidence. Ann Cancer Epidemiol. 2021;5:4-4. doi:10.21037/ace-20-31
  4. Tyldesley S, Boyd C, Schulze K, Walker H, Mackillop WJ. Estimating the need for radiotherapy for lung cancer: an evidence-based, epidemiologic approach. International Journal of Radiation Oncology*Biology*Physics. 2001;49(4):973-985. doi:10.1016/s0360-3016(00)01401-2
  5. Wei Z, Peng X, He L, Wang J, Liu Z, Xiao J. Treatment plan comparison of volumetric‐modulated arc therapy to intensity‐modulated radiotherapy in lung stereotactic body radiotherapy using either 6‐ or 10‐MV photon energies. J Applied Clin Med Phys. 2022;23(8). doi:10.1002/acm2.13714
  6. Ruysscher DD, Wauters E, Jendrossek V, et al. Diagnosis and treatment of radiation induced pneumonitis in patients with lung cancer: An ESTRO clinical practice guideline. Radiotherapy and Oncology. 2025;207:110837. doi:10.1016/j.radonc.2025.110837
  7. Kolilekas L, Costabel U, Tzouvelekis A, Tzilas V, Bouros D. Idiopathic interstitial pneumonia or idiopathic interstitial pneumonitis: what’s in a name? Eur Respir J. 2019;53(2):1800994. doi:10.1183/13993003.00994-2018
  8. Arroyo-Hernández M, Maldonado F, Lozano-Ruiz F, Muñoz-Montaño W, Nuñez-Baez M, Arrieta O. Radiation-induced lung injury: current evidence. BMC Pulm Med. 2021;21(1). doi:10.1186/s12890-020-01376-4
  9. Konkol M, Śniatała P, Milecki P. Radiation-induced lung injury — what do we know in the era of modern radiotherapy? Rep Pract Oncol Radiother. Published online March 31, 2022. doi:10.5603/rpor.a2022.0046
  10. Käsmann L, Dietrich A, Staab-Weijnitz CA, et al. Radiation-induced lung toxicity – cellular and molecular mechanisms of pathogenesis, management, and literature review. Radiat Oncol. 2020;15(1). doi:10.1186/s13014-020-01654-9
  11. Hu X, Bao Y, Xu Y, et al. Final report of a prospective randomized study on thoracic radiotherapy target volume for limited‐stage small cell lung cancer with radiation dosimetric analyses. Cancer. 2019;126(4):840-849. doi:10.1002/cncr.32586
  12. Hanania AN, Mainwaring W, Ghebre YT, Hanania NA, Ludwig M. Radiation-Induced Lung Injury. Chest. 2019;156(1):150-162. doi:10.1016/j.chest.2019.03.033
  13. Mayerhoefer ME, Materka A, Langs G, et al. Introduction to Radiomics. J Nucl Med. 2020;61(4):488-495. doi:10.2967/jnumed.118.222893
  14. Thomas R, Chen YH, Hatabu H, Mak RH, Nishino M. Radiographic patterns of symptomatic radiation pneumonitis in lung cancer patients: Imaging predictors for clinical severity and outcome. Lung Cancer. 2020;145:132-139. doi:10.1016/j.lungcan.2020.03.023
  15. Choi YW, Munden RF, Erasmus JJ, et al. Effects of Radiation Therapy on the Lung: Radiologic Appearances and Differential Diagnosis. RadioGraphics. 2004;24(4):985-997. doi:10.1148/rg.244035160
  16. Begosh-Mayne D, Kumar SS, Toffel S, Okunieff P, O’Dell W. The dose–response characteristics of four NTCP models: using a novel CT-based radiomic method to quantify radiation-induced lung density changes. Sci Rep. 2020;10(1). doi:10.1038/s41598-020-67499-0
  17. Schröder C, Engenhart-Cabillic R, Kirschner S, Blank E, Buchali A. Changes of lung parenchyma density following high dose radiation therapy for thoracic carcinomas – an automated analysis of follow up CT scans. Radiat Oncol. 2019;14(1). doi:10.1186/s13014-019-1276-2
  18. Bernchou U, Schytte T, Bertelsen A, Bentzen SM, Hansen O, Brink C. Time evolution of regional CT density changes in normal lung after IMRT for NSCLC. Radiotherapy and Oncology. 2013;109(1):89-94. doi:10.1016/j.radonc.2013.08.041
  19. Defraene G, La Fontaine M, van Kranen S, et al. Radiation-Induced Lung Density Changes on CT Scan for NSCLC: No Impact of Dose-Escalation Level or Volume. International Journal of Radiation Oncology*Biology*Physics. 2018;102(3):642-650. doi:10.1016/j.ijrobp.2018.06.038
  20. Palma DA, van Sörnsen de Koste J, Verbakel WFAR, Vincent A, Senan S. Lung Density Changes After Stereotactic Radiotherapy: A Quantitative Analysis in 50 Patients. International Journal of Radiation Oncology*Biology*Physics. 2011;81(4):974-978. doi:10.1016/j.ijrobp.2010.07.025
  21. Al Feghali KA, Wu Q (Charles), Devpura S, et al. Correlation of normal lung density changes with dose after stereotactic body radiotherapy (SBRT) for early stage lung cancer. Clinical and Translational Radiation Oncology. 2020;22:1-8. doi:10.1016/j.ctro.2020.02.004
  22. Ghobadi G, Wiegman EM, Langendijk JA, Widder J, Coppes RP, van Luijk P. A new CT-based method to quantify radiation-induced lung damage in patients. Radiotherapy and Oncology. 2015;117(1):4-8. doi:10.1016/j.radonc.2015.07.017
  23. Konkol M, Śniatała K, Śniatała P, Wilk S, Baczyńska B, Milecki P. Computer Tools to Analyze Lung CT Changes after Radiotherapy. Applied Sciences. 2021;11(4):1582. doi:10.3390/app11041582
  24. Konkol M, Bryl M, Fechner M, Matuszewski K, Śniatała P, Milecki P. Normal Lung Tissue CT Density Changes after Volumetric-Arc Radiotherapy (VMAT) for Lung Cancer. JPM. 2022;12(3):485. doi:10.3390/jpm12030485
  25. Palmeri F, Zerunian M, Polici M, et al. Virtual biopsy through CT imaging: can radiomics differentiate between subtypes of non-small cell lung cancer? Radiol med. 2025;130(9):1363-1372. doi:10.1007/s11547-025-02022-x
  26. Yang M, Shi L, Huang T, et al. Value of contrast-enhanced magnetic resonance imaging-T2WI-based radiomic features in distinguishing lung adeno-carcinoma from lung squamous cell carcinoma with solid components >8 mm. J Thorac Dis. 2023;15(2):635-648. doi:10.21037/jtd-23-142
  27. Gao S, Xu Z, Kang W, et al. Artificial intelligence-driven computer aided diagnosis system provides similar diagnosis value compared with doctors’ evaluation in lung cancer screening. BMC Med Imaging. 2024;24(1). doi:10.1186/s12880-024-01288-3
  28. Zhao W, Zou C, Li C, Li J, Wang Z, Chen L. Development of a diagnostic model for malignant solitary pulmonary nodules based on radiomics features. Ann Transl Med. 2022;10(4):201-201. doi:10.21037/atm-22-462
  29. Ogbonna CP, Breen WG, Le Noach P, et al. Radiomics-based Prediction of Local Recurrence after Stereotactic Body Radiation Therapy for Early-Stage Non–Small Cell Lung Cancer. Annals ATS. 2025;22(8):1236-1243. doi:10.1513/annalsats.202410-1047oc
  30. Salazar P, Cheung P, Ganeshan B, Oikonomou A. Predefined and data-driven CT radiomics predict recurrence-free and overall survival in patients with pulmonary metastases treated with stereotactic body radiotherapy. Faggioni L, ed. PLoS ONE. 2024;19(12):e0311910. doi:10.1371/journal. pone.0311910
  31. Jiang Z, Li Q, Ruan J, et al. Machine Learning-Based Prediction of Pathological Responses and Prognosis After Neoadjuvant Chemotherapy for Non– Small-Cell Lung Cancer: A Retrospective Study. Clinical Lung Cancer. 2024;25(5):468-478.e3. doi:10.1016/j.cllc.2024.04.006
  32. Wang F, Yang H, Chen W, et al. A combined model using pre-treatment CT radiomics and clinicopathological features of non-small cell lung cancer to predict major pathological responses after neoadjuvant chemoimmunotherapy. Current Problems in Cancer. 2024;50:101098. doi:10.1016/j.currproblcancer.2024.101098
  33. Park JA, Pham D, Wang H, Khandhar S, Weyant MJ, Suzuki K. Radiomic score is prognostic in clinical stage I lung adenocarcinoma ≤2 cm undergoing surgery. J Thorac Dis. 2024;16(10):6475-6482. doi:10.21037/jtd-24-923
  34. Niu Y, Jia HB, Li XM, et al. Deep learning radiomics and mediastinal adipose tissue-based nomogram for preoperative prediction of postoperative brain metastasis risk in non-small cell lung cancer. BMC Cancer. 2025;25(1). doi:10.1186/s12885-025-14466-5
  35. Muccini H, Vaidhyanathan K. Software Architecture for ML-based Systems: What Exists and What Lies Ahead. 2021 IEEE/ACM 1st Workshop on AI Engineering - Software Engineering for AI (WAIN). Published online May 2021:121-128. doi:10.1109/wain52551.2021.00026
  36. How to describe software architecture, https://wildasoftware.pl/post/how-describe-software-architecture, accessed: 2025-07-02
  37. Github - dagster-io/dagster: An orchestration platform for the devel-opment, production, and observation of data assets., https://github.com/dagsterio/dagster, accessed: 2025-07-02
  38. Mariadb foundation - mariadb.org, https://mariadb.org/, accessed: 2025-07-02
  39. Welcome to python.org, https://www.python.org/, accessed: 2025-07-02
  40. Lowekamp BC, Chen DT, Ibáñez L, Blezek D. The Design of SimpleITK. Front Neuroinform. 2013;7. doi:10.3389/fninf.2013.00045
  41. Heinrich HP, Jenkinson M, Brady M, Schnabel JA. MRF-Based Deformable Registration and Ventilation Estimation of Lung CT. IEEE Trans Med Imaging. 2013;32(7):1239-1248. doi:10.1109/tmi.2013.2246577
  42. Mani V, Selvaraj A. Survey of medical image registration, Journal of Biomedical Engineering and Technology. 2013;1:8-25
  43. Maintz JBA, Viergever MA. A survey of medical image registration. Medical Image Analysis. 1998;2(1):1-36. doi:10.1016/s1361-8415(01)80026-8
  44. Heinrich MP, Jenkinson M, Brady SM, Schnabel JA. Globally Optimal Deformable Registration on a Minimum Spanning Tree Using Dense Displacement Sampling. Lecture Notes in Computer Science. Published online 2012:115-122. doi:10.1007/978-3-642-33454-2_15
  45. Liu F, Yan K, Harrison AP, et al. SAME: Deformable Image Registration Based on Self-supervised Anatomical Embeddings. Lecture Notes in Computer Science. Published online 2021:87-97. doi:10.1007/978-3-030-87202-1_9
  46. Xu Z, Lee CP, Heinrich MP, et al. Evaluation of Six Registration Methods for the Human Abdomen on Clinically Acquired CT. IEEE Trans Biomed Eng. 2016;63(8):1563-1572. doi:10.1109/tbme.2016.2574816
  47. Hofmanninger J, Prayer F, Pan J, Röhrich S, Prosch H, Langs G. Automatic lung segmentation in routine imaging is primarily a data diversity problem, not a methodology problem. Eur Radiol Exp. 2020;4(1). doi:10.1186/s41747-020-00173-2
  48. Morar L, Băciuț G, Băciuț M, et al. Analysis of CBCT Bone Density Using the Hounsfield Scale. Prosthesis. 2022;4(3):414-423. doi:10.3390/prosthesis4030033
DOI: https://doi.org/10.2478/pjmpe-2025-0039 | Journal eISSN: 1898-0309 | Journal ISSN: 1425-4689
Language: English
Page range: 324 - 333
Submitted on: Oct 25, 2025
|
Accepted on: Nov 30, 2025
|
Published on: Dec 17, 2025
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2025 Marek Fechner, Marek Konkol, Marcin Wiktorowski, Piotr Miklosik, Paweł Śniatała, published by Polish Society of Medical Physics
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.