Have a personal or library account? Click to login
Investigating the Dose Parameters of Low-Level Laser Therapy to Optimize Therapeutic Efficacy Cover

Investigating the Dose Parameters of Low-Level Laser Therapy to Optimize Therapeutic Efficacy

By: Kawthar Shurrab  
Open Access
|Dec 2025

References

  1. Farivar S, Malekshahabi T, Shiari R. Biological effects of low level laser therapy. J Lasers Med Sci. 2014;5(2):58-62.
  2. Chow RT, Johnson MI, Lopes-Martins RA, Bjordal JM. Efficacy of low-level laser therapy in the management of neck pain: a systematic review and meta-analysis of randomised placebo or active-treatment controlled trials. The Lancet. 2009;374(9705):1897-1908. doi:10.1016/s0140-6736(09)61522-1
  3. de Freitas LF, Hamblin MR. Proposed Mechanisms of Photobiomodulation or Low-Level Light Therapy. IEEE J Select Topics Quantum Electron. 2016;22(3):348-364. doi:10.1109/jstqe.2016.2561201
  4. Oxford Reference. Grotthuss-Draper law. In Oxford Reference. Retrieved from: https://www.oxfordreference.com/abstract/10.1093/acref/9780198841227.001.0001/acref-9780198841227-e-1945
  5. Chung H, Dai T, Sharma SK, Huang YY, Carroll JD, Hamblin MR. The Nuts and Bolts of Low-level Laser (Light) Therapy. Ann Biomed Eng. 2011;40(2):516-533. doi:10.1007/s10439-011-0454-7
  6. Posten W, Wrone DA, Dover JS, Arndt KA, Silapunt S, Alam M. Low-Level Laser Therapy for Wound Healing. Dermatologic Surgery. 2005;31(3):334-340. doi:10.1097/00042728-200503000-00016
  7. Andrade F do S da SD, Clark RM de O, Ferreira ML. Effects of low-level laser therapy on wound healing. Rev Col Bras Cir. 2014;41(2):129-133. doi:10.1590/s0100-69912014000200010
  8. Hamblin MR. Mechanisms and applications of the anti-inflammatory effects of photobiomodulation. AIMS Biophysics. 2017;4(3):337-361. doi:10.3934/biophy.2017.3.337
  9. Naeser MA, Martin PI, Ho MD, et al. Transcranial, Red/Near-Infrared Light-Emitting Diode Therapy to Improve Cognition in Chronic Traumatic Brain Injury. Photomedicine and Laser Surgery. 2016;34(12):610-626. doi:10.1089/pho.2015.4037
  10. Mansouri V, Arjmand B, Rezaei Tavirani M, Razzaghi M, Rostami-Nejad M, Hamdieh M. Evaluation of Efficacy of Low-Level Laser Therapy. J Lasers Med Sci. 2020;11(4):369-380. doi:10.34172/jlms.2020.60
  11. Taylor DN, Winfield T, Wynd S. Low-Level Laser Light Therapy Dosage Variables vs Treatment Efficacy of Neuromusculoskeletal Conditions: A Scoping Review. Journal of Chiropractic Medicine. 2020;19(2):119-127. doi:10.1016/j.jcm.2020.06.002
  12. da Fonseca A de S. Is there a measure for low power laser dose? Lasers Med Sci. 2018;34(1):223-234. doi:10.1007/s10103-018-2676-5
  13. Shurrab K, Alzghayar JN. Low‐level laser therapy for skin rejuvenation: A safe and effective solution baked by data and visual evidence. J of Cosmetic Dermatology. 2024;23(10):3234-3240. doi:10.1111/jocd.16404
  14. Sannyal M, Mukaddes AMM, Rahman MdM, Mithu MAH. Analysis of the effect of external heating in the human tissue: A finite element approach. Polish Journal of Medical Physics and Engineering. 2020;26(4):251-262. doi:10.2478/pjmpe-2020-0030
  15. Freddo AL, Hauser EB, de Castro VV, Noritomi PY, de Almeida AS, de Oliveira MG. Finite Element Analysis of Masticatory Stress on Neoformed Bone Tissue After Distraction Osteogenesis and Low-Level Laser Therapy: A Pilot Study. Photomedicine and Laser Surgery. 2014;32(8):429-436. doi:10.1089/pho.2013.3671
  16. Shurrab K, Sayem El-Daher M. Potential Thermal Effect of Stimulating Brain Tissue during Low Level Laser Therapy. J-BPE. Published online November 6, 2023:040303. doi:10.18287/jbpe23.09.040303
  17. Ostadhossein R, Hoseinzadeh S. The solution of Pennes’ bio-heat equation with a convection term and nonlinear specific heat capacity using Adomian decomposition. J Therm Anal Calorim. 2022;147(22):12739-12747. doi:10.1007/s10973-022-11445-x
  18. Kengne E, Lakhssassi A, Vaillancourt R, Liu WM. Monitoring of temperature distribution in living biological tissues via blood perfusion. Eur Phys J Plus. 2012;127(8). doi:10.1140/epjp/i2012-12089-7
  19. Hooshmand P, Moradi A, Khezry B. Bioheat transfer analysis of biological tissues induced by laser irradiation. International Journal of Thermal Sciences. 2015;90:214-223. doi:10.1016/j.ijthermalsci.2014.12.004
  20. Kim S, Jeong S. Effects of temperature-dependent optical properties on the fluence rate and temperature of biological tissue during low-level laser therapy. Lasers Med Sci. 2013;29(2):637-644. doi:10.1007/s10103-013-1376-4
  21. Wang Y, Liu J, Wang C, et al. Numerical analysis and experimental verification of time-dependent heat conduction under the action of ultra-short pulse laser. Front Phys. 2024;12. doi:10.3389/fphy.2024.1416064
  22. Mignon C, Tobin DJ, Zeitouny M, Uzunbajakava NE. Shedding light on the variability of optical skin properties: finding a path towards more accurate prediction of light propagation in human cutaneous compartments. Biomed Opt Express. 2018;9(2):852. doi:10.1364/boe.9.000852
  23. Baranoski GVG, Chen TF. Optical Properties of Skin Surface. Measuring the Skin. In: Humbert P, Fanian F, Maibach H, Agache P. (eds) Agache’s Measuring the Skin. Springer, Cham. Doi:10.1007/978-3-319-26594-0_9-1
  24. Setchfield K, Gorman A, Simpson AHRW, Somekh MG, Wright AJ. Relevance and utility of the in-vivo and ex-vivo optical properties of the skin reported in the literature: a review [Invited]. Biomed Opt Express. 2023;14(7):3555. doi:10.1364/boe.493588
  25. Shimojo Y, Nishimura T, Hazama H, Ozawa T, Awazu K. Measurement of absorption and reduced scattering coefficients in Asian human epidermis, dermis, and subcutaneous fat tissues in the 400- to 1100-nm wavelength range for optical penetration depth and energy deposition analysis. J Biomed Opt. 2020;25(04):1. doi:10.1117/1.jbo.25.4.045002
  26. Fu M, Weng W, Yuan H. Numerical Simulation of the Effects of Blood Perfusion, Water Diffusion, and Vaporization on the Skin Temperature and Burn Injuries. Numerical Heat Transfer, Part A: Applications. 2014;65(12):1187-1203. doi:10.1080/10407782.2013.869449
  27. Ding H, Lu JQ, Wooden WA, Kragel PJ, Hu XH. Refractive indices of human skin tissues at eight wavelengths and estimated dispersion relations between 300 and 1600 nm. Phys Med Biol. 2006;51(6):1479-1489. doi:10.1088/0031-9155/51/6/008
  28. Torvi DA, Dale JD. A Finite Element Model of Skin Subjected to a Flash Fire. Journal of Biomechanical Engineering. 1994;116(3):250-255. doi:10.1115/1.2895727
  29. Ahmadikia H, Moradi A, Fazlali R, Parsa AB. Analytical solution of non-Fourier and Fourier bioheat transfer analysis during laser irradiation of skin tissue. J Mech Sci Technol. 2012;26(6):1937-1947. doi:10.1007/s12206-012-0404-9
  30. Klanecek Z, Hren R, Simončič U, Muc BT, Lukač M, Milanič M. Finite Element Method (FEM) Modeling of Laser-Tissue Interaction during Hair Removal. Applied Sciences. 2023;13(14):8553. doi:10.3390/app13148553
  31. Werner J, Buse M. Temperature profiles with respect to inhomogeneity and geometry of the human body. Journal of Applied Physiology. 1988;65(3):1110-1118. doi:10.1152/jappl.1988.65.3.1110
  32. Zhou F, Wang Z, Guan D, Yang Y, Liu C. Human thermal responses under environmental step-change during different winter periods in severe cold area. Building and Environment. 2025;274:112770. doi:10.1016/j.buildenv.2025.112770
  33. Huang YY, Sharma SK, Carroll J, Hamblin MR. Biphasic Dose Response in Low Level Light Therapy – an Update. Dose-Response. 2011;9(4). doi:10.2203/dose-response.11-009.hamblin
  34. Bjordal JM. Low Level Laser Therapy (LLLT) and World Association for Laser Therapy (WALT) Dosage Recommendations. Photomedicine and Laser Surgery. 2012;30(2):61-62. doi:10.1089/pho.2012.9893
  35. ÇİTKAYA AY, ŞEKER ŞS. Study of temperature distribution in light--tissue interaction using the FEM. Turk J Elec Eng & Comp Sci. 2016;24:807-819. doi:10.3906/elk-1307-95
  36. Stebbing ARD. Hormesis – The stimulation of growth by low levels of inhibitors. Science of The Total Environment. 1982;22(3):213-234. doi:10.1016/0048-9697(82)90066-3
  37. Hamblin MR, Demidova TN. Mechanisms of low level light therapy. Hamblin MR, Waynant RW, Anders J, eds. SPIE Proceedings. Published online February 9, 2006. doi:10.1117/12.646294
  38. Jacques SL. Optical properties of biological tissues: a review. Phys Med Biol. 2013;58(11):R37-R61. doi:10.1088/0031-9155/58/11/r37
  39. Joensen J, Demmink JH, Johnson MI, Iversen VV, Lopes-Martins RÁB, Bjordal JM. The Thermal Effects of Therapeutic Lasers with 810 and 904 nm Wavelengths on Human Skin. Photomedicine and Laser Surgery. 2011;29(3):145-153. doi:10.1089/pho.2010.2793
  40. Tunér J, Hode L. It’s All in the Parameters: A Critical Analysis of Some Well-Known Negative Studies on Low-Level Laser Therapy. Journal of Clinical Laser Medicine & Surgery. 1998;16(5):245-248. doi:10.1089/clm.1998.16.245
DOI: https://doi.org/10.2478/pjmpe-2025-0035 | Journal eISSN: 1898-0309 | Journal ISSN: 1425-4689
Language: English
Page range: 303 - 310
Submitted on: May 1, 2025
Accepted on: Sep 26, 2025
Published on: Dec 1, 2025
Published by: Polish Society of Medical Physics
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2025 Kawthar Shurrab, published by Polish Society of Medical Physics
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.