References
- Pilar A, Gupta M, Ghosh Laskar S, Laskar S. Intraoperative radiotherapy: review of techniques and results. ecancer. 2017;11. doi:10.3332/ecancer.2017.750
- Hensley FW. Present state and issues in IORT Physics. Radiat Oncol. 2017;12(1). doi:10.1186/s13014-016-0754-z
- Ryczkowski A, Piotrowski T, Staszczak M, Wiktorowicz M, Adrich P. Optimization of the regularization parameter in the Dual Annealing method used for the reconstruction of energy spectrum of electron beam generated by the AQURE mobile accelerator. Zeitschrift für Medizinische Physik. 2024;34(4):510-520. doi:10.1016/j.zemedi.2023.03.003
- Ryczkowski A, Pawałowski B, Kruszyna-Mochalska MM, et al. Implementation and validation of the method for the energy spectra reconstruction of electron beams generated by the AQURE mobile accelerator. Rep Pract Oncol Radiother. 2025;30(1):62-70. doi:10.5603/rpor.104511
- PN-EN IEC 60601-2-1:2021-12 – Medical electrical equipment – Part 2-1: Particular requirements for the basic safety and essential performance of electron accelerators in the range 1 MeV to 50 MeV
- Misiarz A, Lenartowicz A, Adrich P, et al. Design and performance validation of a novel 3d printed thin-walled and transparent electron beam applicators for intraoperative radiation therapy with beam energy up to 12 MeV. Rep Pract Oncol Radiother. 2024;29(3):329-339. doi:10.5603/rpor.101092
- Kruszyna-Mochalska M, Bijok M, Pawałowski B, Misiarz A, Kosiński K, Pracz J, et al. Zalecenia Polskiego Towarzystwa Fizyki Medycznej dotyczące kontroli jakości w radioterapii śródoperacyjnej promieniowaniem elektronowym (IOERT) za pomocą mobilnych akceleratorów. Inż i Fiz Med. 2019;8(1):7-25
- Ryczkowski A, Pawałowski B, Kruszyna-Mochalska M, et al. Commissioning, dosimetric characterisation and machine performance assessment of the AQURE mobile accelerator for intraoperative radiotherapy. Polish Journal of Medical Physics and Engineering. 2024;30(3):177-181. doi:10.2478/pjmpe-2024-0021
- Kitamori H, Sumida I, Tsujimoto T, Shimamoto H, Murakami S, Ohki M. Evaluation of mouthpiece fixation devices for head and neck radiotherapy patients fabricated in PolyJet photopolymer by a 3D printer. Physica Medica. 2019;58:90-98. doi:10.1016/j.ejmp.2019.02.002
- Shannon A, O’Connell A, O’Sullivan A, et al. A Radiopaque Nanoparticle-Based Ink Using PolyJet 3D Printing for Medical Applications. 3D Printing and Additive Manufacturing. 2020;7(6):259-268. doi:10.1089/3dp.2019.0160
- Groth C, Kravitz ND, Jones PE, et al. Three-dimensional printing technology. J Clin Orthod. 2-14;48(8):475-485.
- Bochnia J, Kozior T, Szot W, et al. Selected Mechanical and Rheological Properties of Medical Resin MED610 in PolyJet Matrix Three-Dimensional Printing Technology in Quality Aspects. 3D Printing and Additive Manufacturing. 2024;11(1):299-313. doi:10.1089/3dp.2022.0215
- Misiarz A, Baran M, inventors. Narodowe Centrum Badań Jądrowych, assignee. Aplikator terapeutycznej dawki promieniowania jonizującego. Polish Patent P.436884. September 5, 2023.
- Seltzer S. Stopping-Powers and Range Tables for Electrons, Protons, and Helium Ions, NIST Standard Reference Database 124. Published online 1993. doi:10.18434/T4NC7Ph. https://www.nist.gov/pml/stopping-power-range-tables-electrons-protons-and-helium-ions