Have a personal or library account? Click to login
Estimation of the radiation damage in CA1, CA2 and CA3 pyramidal and dentate granule cell neurons during proton and carbon-ion irradiation: A study with the Geant4 toolkit Cover

Estimation of the radiation damage in CA1, CA2 and CA3 pyramidal and dentate granule cell neurons during proton and carbon-ion irradiation: A study with the Geant4 toolkit

Open Access
|Dec 2025

References

  1. Schulz-Ertner D, Tsujii H. Particle Radiation Therapy Using Proton and Heavier Ion Beams. JCO. 2007;25(8):953-964. doi:10.1200/jco.2006.09.7816
  2. Olsen DR, Bruland ØS, Frykholm G, Norderhaug IN. Proton therapy – A systematic review of clinical effectiveness. Radiotherapy and Oncology. 2007;83(2):123-132. doi:10.1016/j.radonc.2007.03.001
  3. Cucinotta FA, Alp M, Sulzman FM, Wang M. Space radiation risks to the central nervous system. Life Sciences in Space Research. 2014;2:54-69. doi:10.1016/j.lssr.2014.06.003
  4. Parihar VK, Allen B, Tran KK, et al. What happens to your brain on the way to Mars. Sci Adv. 2015;1(4). doi:10.1126/sciadv.1400256
  5. Batmunkh M, Belov OV, Bayarchimeg L, Lhagva O, Sweilam NH. Estimation of the spatial energy deposition in CA1 pyramidal neurons under exposure to 12C and 56Fe ion beams. Journal of Radiation Research and Applied Sciences. 2015;8(4):498-507. doi:10.1016/j.jrras.2015.05.008
  6. Belov OV, Batmunkh M, Incerti S, Lkhagva O. Radiation damage to neuronal cells: Simulating the energy deposition and water radiolysis in a small neural network. Physica Medica. 2016;32(12):1510-1520. doi:10.1016/j.ejmp.2016.11.004
  7. Cacao E, Parihar VK, Limoli CL, Cucinotta FA. Stochastic Modeling of Radiation-induced Dendritic Damage on in silico Mouse Hippocampal Neurons. Sci Rep. 2018;8(1). doi:10.1038/s41598-018-23855-9
  8. Cucinotta FA, Eliedonna Cacao MA. DETRIMENTS IN NEURON MORPHOLOGY FOLLOWING HEAVY ION IRRADIATION: WHAT’S THE TARGET? Radiation Protection Dosimetry. 2018;183(1-2):69-74. doi:10.1093/rpd/ncy265
  9. Alkadhi KA. Cellular and Molecular Differences Between Area CA1 and the Dentate Gyrus of the Hippocampus. Mol Neurobiol. 2019;56(9):6566-6580. doi:10.1007/s12035-019-1541-2
  10. Conrad CD, Ortiz JB, Judd JM. Chronic stress and hippocampal dendritic complexity: Methodological and functional considerations. Physiology & Behavior. 2017;178:66-81. doi:10.1016/j.physbeh.2016.11.017
  11. Dudek SM, Alexander GM, Farris S. Rediscovering area CA2: unique properties and functions. Nat Rev Neurosci. 2016;17(2):89-102. doi:10.1038/nrn.2015.22
  12. Lambert KG, Buckelew SK, Staffiso-Sandoz G, et al. Activity-stress induces atrophy of apical dendrites of hippocampal pyramidal neurons in male rats. Physiology & Behavior. 1998;65(1):43-49. doi:10.1016/s0031-9384(98)00114-0
  13. Mrdjen D, Fox EJ, Bukhari SA, Montine KS, Bendall SC, Montine TJ. The basis of cellular and regional vulnerability in Alzheimer’s disease. Acta Neuropathol. 2019;138(5):729-749. doi:10.1007/s00401-019-02054-4
  14. Vyas A, Mitra R, Shankaranarayana Rao BS, Chattarji S. Chronic Stress Induces Contrasting Patterns of Dendritic Remodeling in Hippocampal and Amygdaloid Neurons. J Neurosci. 2002;22(15):6810-6818. doi:10.1523/jneurosci.22-15-06810.2002
  15. Spruston N. Pyramidal neurons: dendritic structure and synaptic integration. Nat Rev Neurosci. 2008;9(3):206-221. doi:10.1038/nrn2286
  16. Alp M, Cucinotta FA. Track structure model of microscopic energy deposition by protons and heavy ions in segments of neuronal cell dendrites represented by cylinders or spheres. Life Sciences in Space Research. 2017;13:27-38. doi:10.1016/j.lssr.2017.03.004
  17. Tsujii H. Overview of Carbon-ion Radiotherapy. J Phys: Conf Ser. 2017;777:012032. doi:10.1088/1742-6596/777/1/012032
  18. Batmunkh M, Bugay A, Bayarchimeg L, Lkhagva O. Radiation Damage to Nervous System: Designing Optimal Models for Realistic Neuron Morphology in Hippocampus. Adam Gh, Buša J, Hnatič M, Podgainy D, eds. EPJ Web Conf. 2018;173:05004. doi:10.1051/epjconf/201817305004
  19. Alp M, Cucinotta FA. Biophysics Model of Heavy-Ion Degradation of Neuron Morphology in Mouse Hippocampal Granular Cell Layer Neurons. Radiation Research. 2018;189(3):312-325. doi:10.1667/rr14923.1
  20. Spencer RL, Bland ST. Hippocampus and Hippocampal Neurons. Stress: Physiology, Biochemistry, and Pathology. Published online 2019:57-68. doi:10.1016/b978-0-12-813146-6.00005-9
  21. Bayarchimeg L, Batmunkh M, Belov O, Lkhagva O. Simulation of Radiation Damage to Neural Cells with the Geant4-DNA Toolkit. Adam Gh, Buša J, Hnatič M, Podgainy D, eds. EPJ Web Conf. 2018;173:05005. doi:10.1051/epjconf/201817305005
  22. Woolley CS, Gould E, McEwen BS. Exposure to excess glucocorticoids alters dendritic morphology of adult hippocampal pyramidal neurons. Brain Research. 1990;531(1-2):225-231. doi:10.1016/0006-8993(90)90778-a
  23. Watanabe Y, Gould E, McEwen BS. Stress induces atrophy of apical dendrites of hippocampal CA3 pyramidal neurons. Brain Research. 1992;588(2):341-345. doi:10.1016/0006-8993(92)91597-8
  24. Ormerod BK, Palmer TD, Caldwell MA. Neurodegeneration and cell replacement. Phil Trans R Soc B. 2007;363(1489):153-170. doi:10.1098/rstb.2006.2018
  25. Pawluski JL, Brummelte S, Barha CK, Crozier TM, Galea LAM. Effects of steroid hormones on neurogenesis in the hippocampus of the adult female rodent during the estrous cycle, pregnancy, lactation and aging. Frontiers in Neuroendocrinology. 2009;30(3):343-357. doi:10.1016/j.yfrne.2009.03.007
  26. Mattson MP, Magnus T. Ageing and neuronal vulnerability. Nat Rev Neurosci. 2006;7(4):278-294. doi:10.1038/nrn1886
  27. Mattson MP. Glutamate and Neurotrophic Factors in Neuronal Plasticity and Disease. Annals of the New York Academy of Sciences. 2008;1144(1):97-112. doi:10.1196/annals.1418.005
  28. Mattson MP, Chan SL. Neuronal and glial calcium signaling in Alzheimer’s disease. Cell Calcium. 2003;34(4-5):385-397. doi:10.1016/s0143-4160(03)00128-3
  29. Ishizuka N, Cowan WM, Amaral DG. A quantitative analysis of the dendritic organization of pyramidal cells in the rat hippocampus. J of Comparative Neurology. 1995;362(1):17-45. doi:10.1002/cne.903620103
  30. Lorente de No R. Studies on the structure of the cerebral cortex. II. Continuation of the study of the ammonic system. Journal fur Psychologie und Neurologie. 1934;46:113-177.
  31. Dudek SM, Alexander GM, Farris S. Rediscovering area CA2: unique properties and functions. Nat Rev Neurosci. 2016;17(2):89-102. doi:10.1038/nrn.2015.22
  32. Cappaert NLM, Van Strien NM, Witter MP. Hippocampal Formation. The Rat Nervous System. Published online 2015:511-573. doi:10.1016/b978-0-12-374245-2.00020-6
  33. Dickstein DL, Brautigam H, Stockton SD Jr, Schmeidler J, Hof PR. Changes in dendritic complexity and spine morphology in transgenic mice expressing human wild-type tau. Brain Struct Funct. 2010;214(2-3):161-179. doi:10.1007/s00429-010-0245-1
  34. Mufson EJ, Binder L, Counts SE, et al. Mild cognitive impairment: pathology and mechanisms. Acta Neuropathol. 2011;123(1):13-30. doi:10.1007/s00401-011-0884-1
  35. Dickstein DL, Weaver CM, Luebke JI, Hof PR. Dendritic spine changes associated with normal aging. Neuroscience. 2013;251:21-32. doi:10.1016/j.neuroscience.2012.09.077
  36. Yoshihara Y, De Roo M, Muller D. Dendritic spine formation and stabilization. Current Opinion in Neurobiology. 2009;19(2):146-153. doi:10.1016/j.conb.2009.05.013
  37. Chen LY, Rex CS, Pham DT, Lynch G, Gall CM. BDNF Signaling during Learning Is Regionally Differentiated within Hippocampus. J Neurosci. 2010;30(45):15097-15101. doi:10.1523/jneurosci.3549-10.2010
  38. Das K. Assessment of PC12 cell differentiation and neurite growth: a comparison of morphological and neurochemical measures. Neurotoxicology and Teratology. 2004;26(3):397-406. doi:10.1016/j.ntt.2004.02.006
  39. Thoenen H. The changing scene of neurotrophic factors. Trends in Neurosciences. 1991;14(5):165-170. doi:10.1016/0166-2236(91)90097-e
  40. Allen AR, Raber J, Chakraborti A, Sharma S, Fike JR. 56Fe Irradiation Alters Spine Density and Dendritic Complexity in the Mouse Hippocampus. Radiation Research. 2015;184(6):586-594. doi:10.1667/rr14103.1
  41. BRIZZEE KR, ORDY JM, KAACK MB, BEAVERS T. Effect of Prenatal Ionizing Radiation on the Visual Cortex and Hippocampus of Newborn Squirrel Monkeys. Journal of Neuropathology and Experimental Neurology. 1980;39(5):523-540. doi:10.1097/00005072-198009000-00002
  42. Chakraborti A, Allen A, Allen B, Rosi S, Fike JR. Cranial Irradiation Alters Dendritic Spine Density and Morphology in the Hippocampus. Tofilon PJ, ed. PLoS ONE. 2012;7(7):e40844. doi:10.1371/journal.pone.0040844
  43. Chmielewski NN, Caressi C, Giedzinski E, Parihar VK, Limoli CL. Contrasting the effects of proton irradiation on dendritic complexity of subiculum neurons in wild type and MCAT mice. Environ and Mol Mutagen. 2016;57(5):364-371. doi:10.1002/em.22006
  44. Kovalchuk A, Mychasiuk R, Muhammad A, et al. Profound and Sexually Dimorphic Effects of Clinically-Relevant Low Dose Scatter Irradiation on the Brain and Behavior. Front Behav Neurosci. 2016;10. doi:10.3389/fnbeh.2016.00084
  45. Parihar VK, Limoli CL. Cranial irradiation compromises neuronal architecture in the hippocampus. Proc Natl Acad Sci USA. 2013;110(31):12822-12827. doi:10.1073/pnas.1307301110
  46. Parihar VK, Pasha J, Tran KK, Craver BM, Acharya MM, Limoli CL. Persistent changes in neuronal structure and synaptic plasticity caused by proton irradiation. Brain Struct Funct. 2014;220(2):1161-1171. doi:10.1007/s00429-014-0709-9
  47. Shirai K, Mizui T, Suzuki Y, et al. X Irradiation Changes Dendritic Spine Morphology and Density through Reduction of Cytoskeletal Proteins in Mature Neurons. Radiation Research. 2013;179(6):630-636. doi:10.1667/rr3098.1
DOI: https://doi.org/10.2478/pjmpe-2025-0032 | Journal eISSN: 1898-0309 | Journal ISSN: 1425-4689
Language: English
Page range: 275 - 289
Submitted on: Sep 22, 2024
|
Accepted on: Oct 7, 2025
|
Published on: Dec 1, 2025
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2025 Fatemeh Dolatjavid, Bagher Farhood, Mohammadali Atlasi, Akbar Aliasgharzadeh, Mehran Mohseni, Eman Obeidavi, Habiballah Moradi, published by Polish Society of Medical Physics
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.