Have a personal or library account? Click to login
Evaluating scintigraphic dyssynchrony as radiomic parameters for dynamic laminar and turbulent fluids in compartmental phantom systems: A signal processing study Cover

Evaluating scintigraphic dyssynchrony as radiomic parameters for dynamic laminar and turbulent fluids in compartmental phantom systems: A signal processing study

By: Ahmad Alenezi  
Open Access
|Aug 2025

References

  1. Nagueh SF. Mechanical dyssynchrony in congestive heart failure: diagnostic and therapeutic implications. J Am Coll Cardiol. 2008;51:18-22. Doi: 10.1016/j.jacc.2007.08.052
  2. Polidori T, De Santis D, Rucci C, et al. Radiomics applications in cardiac imaging: a comprehensive review. Radiol med. 2023;128(8):922-933. doi:10.1007/s11547-023-01658-x
  3. Sabouri M, Hajianfar G, Hosseini Z, et al. Myocardial Perfusion SPECT Imaging Radiomic Features and Machine Learning Algorithms for Cardiac Contractile Pattern Recognition. J Digit Imaging. 2022;36(2):497-509. doi:10.1007/s10278-022-00705-9
  4. Cook GJR, Azad G, Owczarczyk K, Siddique M, Goh V. Challenges and Promises of PET Radiomics. International Journal of Radiation Oncology*Biology*Physics. 2018;102(4):1083-1089. doi:10.1016/j.ijrobp.2017.12.268
  5. Khandoker AH, Palaniswami M, Begg RK. A comparative study on approximate entropy measure and poincaré plot indexes of minimum foot clearance variability in the elderly during walking. J NeuroEngineering Rehabil. 2008;5(1). doi:10.1186/1743-0003-5-4
  6. Li X, Zheng D, Zhou S, Tang D, Wang C, Wu G. Approximate entropy of fetal heart rate variability as a predictor of fetal distress in women at term pregnancy. Acta Obstet Gynecol Scand. 2005;84(9):837-843. doi:10.1111/j.0001-6349.2005.00773.x
  7. Pincus SM. Approximate entropy as a measure of system complexity. Proc Natl Acad Sci USA. 1991;88(6):2297-2301. doi:10.1073/pnas.88.6.2297
  8. Jones KA, Paterson CA, Hamilton DJ, et al. Optimising approximate entropy for assessing cardiac dyssynchrony with radionuclide ventriculography. Biomedical Signal Processing and Control. 2021;68:102703. doi:10.1016/j.bspc.2021.102703
  9. O’Connell JW, Schreck C, Moles M, et al. A unique method by which to quantitate synchrony with equilibrium radionuclide angiography. Journal of Nuclear Cardiology. 2005;12(4):441-450. doi:10.1016/j.nuclcard.2005.05.006
  10. Jimenez-Angeles L, Medina-Banuelos V, Valdes-Cristerna R, Vallejo E. Analysis of Ventricular Contraction by Factorial Phase Imaging with Equilibrium Radionuclide Angiography. 2006 International Conference of the IEEE Engineering in Medicine and Biology Society. Published online August 2006:1081-1084. doi:10.1109/iembs.2006.259252
  11. Nichols KJ, Van Tosh A, Wang Y, De Bondt P, Palestro CJ, Reichek N. Automated detection of left ventricular dyskinesis by gated blood pool SPECT. Nuclear Medicine Communications. 2010;31(10):881-888. doi:10.1097/mnm.0b013e32833d82ff
  12. Lalonde M, Wells RG, Birnie D, Ruddy TD, Wassenaar R. Development and optimization of SPECT gated blood pool cluster analysis for the prediction of CRT outcome. Med Phys. 2014;41(7):072506. doi:10.1118/1.4883881
  13. Johnson CJ, Roberts JD, James JH, et al. Comparison of radionuclide angiographic synchrony analysis to echocardiography and magnetic resonance imaging for the diagnosis of arrhythmogenic right ventricular cardiomyopathy. Heart Rhythm. 2015;12(6):1268-1275. doi:10.1016/j.hrthm.2015.02.033
  14. Sullivan DC, Obuchowski NA, Kessler LG, et al. Metrology Standards for Quantitative Imaging Biomarkers. Radiology. 2015;277(3):813-825. doi:10.1148/radiol.2015142202
  15. Goldberger AL, Peng CK, Lipsitz LA. What is physiologic complexity and how does it change with aging and disease? Neurobiology of Aging. 2002;23(1):23-26. doi:10.1016/s0197-4580(01)00266-4
  16. Xu Y, Ma X, Ning X. Estimation of ApEn for short-term HFECG based on multi-resolution analysis. Physica A: Statistical Mechanics and its Applications. 2007;376:401-408. doi:10.1016/j.physa.2006.10.055
  17. Kuronuma K, Miller RJH, Van Kriekinge SD, et al. Incremental prognostic value of stress phase entropy over standard PET myocardial perfusion imaging variables. Eur J Nucl Med Mol Imaging. 2023;50(12):3619-3629. doi:10.1007/s00259-023-06323-z
  18. Zwanenburg A, Vallières M, Abdalah MA, et al. The Image Biomarker Standardization Initiative: Standardized Quantitative Radiomics for High-Throughput Image-based Phenotyping. Radiology. 2020;295(2):328-338. doi:10.1148/radiol.2020191145
  19. Wang Y, Lu S. A bounded random process model and its application in heart rate variability analysis. Intl J Phys Sci. 2011;6:651-659.
  20. Alenezi A. MATLAB central. https://www.mathworks.com/matlabcentral/profile/authors/27389582?detail=fileexchange. Accessed August 5, 2023.
  21. Jones KA, Small AD, Ray S, et al. Radionuclide ventriculography phase analysis for risk stratification of patients undergoing cardiotoxic cancer therapy. Journal of Nuclear Cardiology. 2022;29(2):581-589. doi:10.1007/s12350-020-02277-z
  22. Singh H, Singhal A, Sharma P, Patel CD, Seth S, Malhotra A. Quantitative assessment of cardiac mechanical synchrony using equilibrium radionuclide angiography. Journal of Nuclear Cardiology. 2013;20(3):415-425. doi:10.1007/s12350-013-9705-3
  23. Juarez-Orozco LE, Monroy-Gonzalez A, Prakken NHJ, et al. Phase analysis of gated PET in the evaluation of mechanical ventricular synchrony: A narrative overview. Journal of Nuclear Cardiology. 2019;26(6):1904-1913. doi:10.1007/s12350-019-01670-7
  24. Vallejo E, Jiménez L, Rodríguez G, Roffe F, Bialostozky D. Evaluation of Ventricular Synchrony with Equilibrium Radionuclide Angiography: Assessment of Variability and Accuracy. Archives of Medical Research. 2010;41(2):83-91. doi:10.1016/j.arcmed.2010.02.003
  25. Fauchier L, Marie O, Casset-Senon D, Babuty D, Cosnay P, Fauchier JP. Interventricular and intraventricular dyssynchrony in idiopathic dilated cardiomyopathy. Journal of the American College of Cardiology. 2002;40(11):2022-2030. doi:10.1016/s0735-1097(02)02569-x
  26. Dauphin R, Nonin E, Bontemps L, et al. Quantification of Ventricular Resynchronization Reserve by Radionuclide Phase Analysis in Heart Failure Patients. Circ: Cardiovascular Imaging. 2011;4(2):114-121. doi:10.1161/circimaging.110.950956
  27. Marcassa C, Campini R, Verna E, Ceriani L, Giannuzzi P. Assessment of cardiac asynchrony by radionuclide phase analysis: Correlation with ventricular function in patients with narrow or prolonged QRS interval. European J of Heart Fail. 2007;9(5):484-490. doi:10.1016/j.ejheart.2007.01.002
  28. Fukunaga T, Sanui K, Kadokami T, Sasaki M. Influences of radionuclides on left ventricular phase analysis of gated myocardial perfusion single-photon emission computed tomography images in ischemic heart disease. Ann Nucl Med. 2021;35(6):735-743. doi:10.1007/s12149-021-01615-6
  29. Domenichini F, Pedrizzetti G. Asymptotic Model of Fluid–Tissue Interaction for Mitral Valve Dynamics. Cardiovasc Eng Tech. 2014;6(2):95-104. doi:10.1007/s13239-014-0201-y
  30. Jahanzamin J, Fatouraee N, Nasiraei-Moghaddam A. Effect of turbulent models on left ventricle diastolic flow patterns simulation. Computer Methods in Biomechanics and Biomedical Engineering. 2019;22(15):1229-1238. doi:10.1080/10255842.2019.1655642
  31. Varghese SS, Frankel SH. Numerical Modeling of Pulsatile Turbulent Flow in Stenotic Vessels. Journal of Biomechanical Engineering. 2003;125(4):445-460. doi:10.1115/1.1589774
  32. Saqr KM, Tupin S, Rashad S, et al. Physiologic blood flow is turbulent. Sci Rep. 2020;10(1). doi:10.1038/s41598-020-72309-8
  33. Fraser KH, Taskin ME, Griffith BP, Wu ZJ. The use of computational fluid dynamics in the development of ventricular assist devices. Medical Engineering & Physics. 2011;33(3):263-280. doi:10.1016/j.medengphy.2010.10.014
  34. Tobin N, Manning KB. Toward modeling thrombosis and thromboembolism in laminar and turbulent flow regimes. Numer Methods Biomed Eng. 2022;38(10). doi:10.1002/cnm.3638
  35. Qian K xi. Haemodynamic approach to reducing thrombosis and haemolysis in an impeller pump. Journal of Biomedical Engineering. 1990;12(6):533-535. doi:10.1016/0141-5425(90)90066-v
  36. Kheradvar A, Rickers C, Morisawa D, Kim M, Hong GR, Pedrizzetti G. Diagnostic and prognostic significance of cardiovascular vortex formation. Journal of Cardiology. 2019;74(5):403-411. doi:10.1016/j.jjcc.2019.05.005
  37. Marchese P, Cantinotti M, Van den Eynde J, et al. Left ventricular vortex analysis by high-frame rate blood speckle tracking echocardiography in healthy children and in congenital heart disease. IJC Heart & Vasculature. 2021;37:100897. doi:10.1016/j.ijcha.2021.100897
  38. Elbaz MSM, Calkoen EE, Westenberg JJM, Lelieveldt BPF, Roest AAW, van der Geest RJ. Vortex flow during early and late left ventricular filling in normal subjects: quantitative characterization using retrospectively-gated 4D flow cardiovascular magnetic resonance and three-dimensional vortex core analysis. Journal of Cardiovascular Magnetic Resonance. 2014;16(1):78. doi:10.1186/s12968-014-0078-9
  39. Alenezi A, McKiddie F, Nath M, Mayya A, Welch A. 2024. Cardiotoxicity detection tool for breast cancer chemotherapy: a retrospective study. PeerJ Computer Science 12:e2230 https://doi.org/10.7717/peerj-cs.2230
DOI: https://doi.org/10.2478/pjmpe-2025-0026 | Journal eISSN: 1898-0309 | Journal ISSN: 1425-4689
Language: English
Page range: 227 - 238
Submitted on: Feb 14, 2025
|
Accepted on: Jul 24, 2025
|
Published on: Aug 28, 2025
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2025 Ahmad Alenezi, published by Polish Society of Medical Physics
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.