Have a personal or library account? Click to login
Deep Learning-Based Synthetic-CT Generation from MRI for Enhanced Precision in MRI-Only Radiotherapy Dose Planning Cover

Deep Learning-Based Synthetic-CT Generation from MRI for Enhanced Precision in MRI-Only Radiotherapy Dose Planning

Open Access
|Aug 2025

References

  1. Acquah IK, Inkoom S, Hasford F. Comparison of Methods of µ-Map Generation: MR-Based Method in PET/MR Imaging Versus Pseudo-CT Method in Radiotherapy Dose Planning. Iranian Journal of Medical Physics. 2024;21(6):355-364. doi:10.22038/ijmp.2024.77457.2369
  2. Dinkla AM, Wolterink JM, Maspero M, et al. MR-Only Brain Radiation Therapy: Dosimetric Evaluation of Synthetic CTs Generated by a Dilated Convolutional Neural Network. International Journal of Radiation Oncology*Biology*Physics. 2018;102(4):801-812. doi:10.1016/j.ijrobp.2018.05.058
  3. Xiang L, Wang Q, Nie D, et al. Deep embedding convolutional neural network for synthesizing CT image from T1-Weighted MR image. Medical Image Analysis. 2018;47:31-44. doi:10.1016/j.media.2018.03.011
  4. Edmund JM, Nyholm T. A review of substitute CT generation for MRI-only radiation therapy. Radiat Oncol. 2017;12(1). doi:10.1186/s13014-016-0747-y
  5. Singh A, Kwiecinski J, Cadet S, et al. Automated nonlinear registration of coronary PET to CT angiography using pseudo-CT generated from PET with generative adversarial networks. Journal of Nuclear Cardiology. 2023;30(2):604-615. doi:10.1007/s12350-022-03010-8
  6. Ranjan A, Lalwani D, Misra R. GAN for synthesizing CT from T2-weighted MRI data towards MR-guided radiation treatment. Magn Reson Mater Phy. 2021;35(3):449-457. doi:10.1007/s10334-021-00974-5
  7. Wolterink JM, Dinkla AM, Savenije MHF, Seevinck PR, van den Berg CAT, Išgum I. Deep MR to CT Synthesis Using Unpaired Data. Lecture Notes in Computer Science. Published online 2017:14-23. doi:10.1007/978-3-319-68127-6_2
  8. Nie D, Trullo R, Lian J, et al. Medical Image Synthesis with Context-Aware Generative Adversarial Networks. Lecture Notes in Computer Science. Published online 2017:417-425. doi:10.1007/978-3-319-66179-7_48
  9. Goodfellow IJ, Pouget-Abadie J, Mirza M, et al. Generative Adversarial Nets. In: Ghahramani Z, Welling M, Cortes C, Lawrence N, Weinberger KQ, eds. Advances in Neural Information Processing Systems. Vol 27. Curran Associates, Inc.; 2014. https://proceedings.neurips.cc/paper_files/paper/2014/file/f033ed80deb0234979a61f95710dbe25-Paper.pdf
  10. Zhu JY, Park T, Isola P, Efros AA. Unpaired Image-to-Image Translation Using Cycle-Consistent Adversarial Networks. 2017 IEEE International Conference on Computer Vision (ICCV). Published online October 2017:2242-2251. doi:10.1109/iccv.2017.244
  11. Acquah IK, Issahaku S, Tagoe SNA. A systematic review of deep learning techniques for generating synthetic CT images from MRI data. Polish Journal of Medical Physics and Engineering. 2025;31(1):20-38. doi:10.2478/pjmpe-2025-0003
  12. Tustison NJ, Avants BB, Cook PA, et al. N4ITK: Improved N3 Bias Correction. IEEE Trans Med Imaging. 2010;29(6):1310-1320. doi:10.1109/tmi.2010.2046908
  13. Otsu N. A threshold selection method from gray-level histograms. Automatica. 1975;11(285-296):23-27
  14. Ronneberger O, Fischer P, Brox T. U-Net: Convolutional Networks for Biomedical Image Segmentation. Lecture Notes in Computer Science. Published online 2015:234-241. doi:10.1007/978-3-319-24574-4_28
  15. Liu L, Johansson A, Cao Y, Dow J, Lawrence TS, Balter JM. Abdominal synthetic CT generation from MR Dixon images using a U-net trained with ‘semi-synthetic’ CT data. Phys Med Biol. 2020;65(12):125001. doi:10.1088/1361-6560/ab8cd2
  16. Rusanov B, Hassan GM, Reynolds M, et al. Transformer CycleGAN with uncertainty estimation for CBCT based synthetic CT in adaptive radiotherapy. Phys Med Biol. 2024;69(3):035014. doi:10.1088/1361-6560/ad1cfc
  17. Maspero M, Bentvelzen LG, Savenije MHF, et al. Deep learning-based synthetic CT generation for paediatric brain MR-only photon and proton radiotherapy. Radiotherapy and Oncology. 2020;153:197-204. doi:10.1016/j.radonc.2020.09.029
  18. Han X. MR-based synthetic CT generation using a deep convolutional neural network method. Med Phys. 2017;44(4):1408-1419. doi:10.1002/mp.12155
  19. Kazemifar S, McGuire S, Timmerman R, et al. MRI-only brain radiotherapy: Assessing the dosimetric accuracy of synthetic CT images generated using a deep learning approach. Radiotherapy and Oncology. 2019;136:56-63. doi:10.1016/j.radonc.2019.03.026
  20. Pan S, Abouei E, Wynne J, et al. Synthetic CT generation from MRI using 3D transformer‐based denoising diffusion model. Medical Physics. 2023;51(4):2538-2548. doi:10.1002/mp.16847
DOI: https://doi.org/10.2478/pjmpe-2025-0025 | Journal eISSN: 1898-0309 | Journal ISSN: 1425-4689
Language: English
Page range: 219 - 226
Submitted on: Feb 14, 2025
Accepted on: Jul 24, 2025
Published on: Aug 28, 2025
Published by: Polish Society of Medical Physics
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2025 Isaac Kwesi Acquah, Shiraz Issahaku, Samuel Nii Adu Tagoe, Theophilus Akumea Sackey, published by Polish Society of Medical Physics
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.