Have a personal or library account? Click to login
A systematic review of deep learning techniques for generating synthetic CT images from MRI data Cover

A systematic review of deep learning techniques for generating synthetic CT images from MRI data

Open Access
|Apr 2025

References

  1. Yousef R, Khan S, Gupta G, et al. U-Net-Based Models towards Optimal MR Brain Image Segmentation. Diagnostics. 2023;13(9):1624. https://doi.org/10.3390/diagnostics13091624
  2. Sharma DK, Chatterjee M, Kaur G, Vavilala S. Deep learning applications for disease diagnosis. Deep Learning for Medical Applications with Unique Data. Published online 2022:31-51. https://doi.org/10.1016/B978-0-12-824145-5.00005-8
  3. Rana M, Bhushan M. Machine learning and deep learning approach for medical image analysis: diagnosis to detection. Multimed Tools Appl. 2022;82(17):26731-26769. https://doi.org/10.1007/s11042-022-14305-w
  4. Wyawahare MV, Patil PM, Abhyankar HK. Image registration techniques: an overview. International Journal of Signal Processing, Image Processing and Pattern Recognition. 2009;2(3):11-28.
  5. Brady SL, Trout AT, Somasundaram E, Anton CG, Li Y, Dillman JR. Improving Image Quality and Reducing Radiation Dose for Pediatric CT by Using Deep Learning Reconstruction. Radiology. 2021;298(1):180-188. https://doi.org/10.1148/radiol.2020202317
  6. Zhang X, Zhang Y, Zhang G, et al. Deep Learning With Radiomics for Disease Diagnosis and Treatment: Challenges and Potential. Front Oncol. 2022;12. https://doi.org/10.3389/fonc.2022.773840
  7. Kasula BY. Harnessing Machine Learning for Personalized Patient Care. Transactions on Latest Trends in Artificial Intelligence. 2023;4(4).
  8. Dias R, Torkamani A. Artificial intelligence in clinical and genomic diagnostics. Genome Med. 2019;11(1). https://doi.org/10.1186/s13073-019-0689-8
  9. Bullmore E. The future of functional MRI in clinical medicine. NeuroImage. 2012;62(2):1267-1271. https://doi.org/10.1016/j.neuroimage.2012.01.026
  10. Razzak MI, Naz S, Zaib A. Deep Learning for Medical Image Processing: Overview, Challenges and the Future. Lecture Notes in Computational Vision and Biomechanics. Published online November 14, 2017:323-350. https://doi.org/10.1007/978-3-319-65981-7_12
  11. Johnstone E, Wyatt JJ, Henry AM, et al. Systematic Review of Synthetic Computed Tomography Generation Methodologies for Use in Magnetic Resonance Imaging–Only Radiation Therapy. International Journal of Radiation Oncology*Biology*Physics. 2018;100(1):199-217. https://doi.org/10.1016/j.ijrobp.2017.08.043
  12. Acquah IK, Inkoom S, Hasford F. COMPARISON OF METHODS OF µ-MAP GENERATION: MR-BASED METHOD IN PET/MR IMAGING VERSUS PSEUDO-CT METHOD IN RADIOTHERAPY DOSE PLANNING. Iranian Journal of Medical Physics. 2024.
  13. Edmund JM, Nyholm T. A review of substitute CT generation for MRI-only radiation therapy. Radiat Oncol. 2017;12(1). https://doi.org/10.1186/s13014-016-0747-y
  14. Vera-Olmos J, Torrado-Carvajal A, Prieto-de-la-Lastra C, et al. How to Pseudo-CT: A Comparative Review of Deep Convolutional Neural Network Architectures for CT Synthesis. Applied Sciences. 2022;12(22):11600. https://doi.org/10.3390/app122211600
  15. Largent A, Barateau A, Nunes JC, et al. Comparison of Deep Learning-Based and Patch-Based Methods for Pseudo-CT Generation in MRI-Based Prostate Dose Planning. International Journal of Radiation Oncology*Biology*Physics. 2019;105(5):1137-1150. https://doi.org/10.1016/j.ijrobp.2019.08.049
  16. Bahrami A, Karimian A, Arabi H. Comparison of different deep learning architectures for synthetic CT generation from MR images. Physica Medica. 2021;90:99-107. https://doi.org/10.1016/j.ejmp.2021.09.006
  17. Boulanger M, Nunes JC, Chourak H, et al. Deep learning methods to generate synthetic CT from MRI in radiotherapy: A literature review. Physica Medica. 2021;89:265-281. https://doi.org/10.1016/j.ejmp.2021.07.027
  18. Mahmood T, Rehman A, Saba T, Nadeem L, Bahaj SAO. Recent Advancements and Future Prospects in Active Deep Learning for Medical Image Segmentation and Classification. IEEE Access. 2023;11:113623-113652. https://doi.org/10.1109/ACCESS.2023.3313977
  19. Boldrini L, Bibault JE, Masciocchi C, Shen Y, Bittner MI. Deep Learning: A Review for the Radiation Oncologist. Front Oncol. 2019;9. https://doi.org/10.3389/fonc.2019.00977
  20. Cao Z, Gao X, Chang Y, Liu G, Pei Y. Improving synthetic CT accuracy by combining the benefits of multiple normalized preprocesses. J Applied Clin Med Phys. 2023;24(8). https://doi.org/10.1002/acm2.14004
  21. Harrison R, Jones B, Gardner P, Lawton R. Quality assessment with diverse studies (QuADS): an appraisal tool for methodological and reporting quality in systematic reviews of mixed- or multi-method studies. BMC Health Serv Res. 2021;21(1). https://doi.org/10.1186/s12913-021-06122-y
  22. Savin GD, Fleșeriu C, Batrancea L. Eye tracking and tourism research: A systematic literature review. Journal of Vacation Marketing. 2021;28(3):285-302. https://doi.org/10.1177/13567667211053387
  23. Nightingale A. A guide to systematic literature reviews. Surgery (Oxford). 2009;27(9):381-384. https://doi.org/10.1016/j.mpsur.2009.07.005
  24. Moher D, Shamseer L, et al. Preferred reporting items for systematic review and meta-analysis protocols (PRISMA-P) 2015 statement. Syst Rev. 2015;4(1). https://doi.org/10.1186/2046-4053-4-1
  25. Anudjo MNK, Vitale C, Elshami W, et al. Considerations for environmental sustainability in clinical radiology and radiotherapy practice: A systematic literature review and recommendations for a greener practice. Radiography. 2023;29(6):1077-1092. https://doi.org/10.1016/j.radi.2023.09.006
  26. Sirriyeh R, Lawton R, Gardner P, Armitage G. Reviewing studies with diverse designs: the development and evaluation of a new tool. Evaluation Clinical Practice. 2011;18(4):746-752. https://doi.org/10.1111/j.1365-2753.2011.01662.x
  27. Han X. MR-based synthetic CT generation using a deep convolutional neural network method. Med Phys. 2017;44(4):1408-1419. https://doi.org/10.1002/mp.12155
  28. Gupta D, Kim M, Vineberg KA, Balter JM. Generation of Synthetic CT Images From MRI for Treatment Planning and Patient Positioning Using a 3-Channel U-Net Trained on Sagittal Images. Front Oncol. 2019;9. https://doi.org/10.3389/fonc.2019.00964
  29. Neppl S, Landry G, Kurz C, et al. Evaluation of proton and photon dose distributions recalculated on 2D and 3D Unet-generated pseudoCTs from T1-weighted MR head scans. Acta Oncologica. 2019;58(10):1429-1434. https://doi.org/10.1080/0284186X.2019.1630754
  30. Nie D, Trullo R, Lian J, et al. Medical Image Synthesis with Context-Aware Generative Adversarial Networks. Lecture Notes in Computer Science. Published online 2017:417-425. https://doi.org/10.1007/978-3-319-66179-7_48
  31. Emami H, Dong M, Nejad-Davarani SP, Glide-Hurst CK. Generating synthetic CTs from magnetic resonance images using generative adversarial networks. Medical Physics. 2018;45(8):3627-3636. https://doi.org/10.1002/mp.13047
  32. Kazemifar S, McGuire S, Timmerman R, et al. MRI-only brain radiotherapy: Assessing the dosimetric accuracy of synthetic CT images generated using a deep learning approach. Radiotherapy and Oncology. 2019;136:56-63. https://doi.org/10.1016/j.radonc.2019.03.026
  33. Wolterink JM, Dinkla AM, Savenije MHF, Seevinck PR, van den Berg CAT, Išgum I. Deep MR to CT Synthesis Using Unpaired Data. Lecture Notes in Computer Science. Published online 2017:14-23. https://doi.org/10.1007/978-3-319-68127-6_2
  34. Yang H, Sun J, Carass A, et al. Unpaired Brain MR-to-CT Synthesis Using a Structure-Constrained CycleGAN. Lecture Notes in Computer Science. Published online 2018:174-182. https://doi.org/10.1007/978-3-030-00889-5_20
  35. Koike Y, Akino Y, Sumida I, et al. Feasibility of synthetic computed tomography generated with an adversarial network for multi-sequence magnetic resonance-based brain radiotherapy. Journal of Radiation Research. 2019;61(1):92-103. https://doi.org/10.1093/jrr/rrz063
  36. Dinkla AM, Florkow MC, Maspero M, et al. Dosimetric evaluation of synthetic CT for head and neck radiotherapy generated by a patch-based three-dimensional convolutional neural network. Medical Physics. 2019;46(9):4095-4104. https://doi.org/10.1002/mp.13663
  37. Xiang L, Wang Q, Nie D, et al. Deep embedding convolutional neural network for synthesizing CT image from T1-Weighted MR image. Medical Image Analysis. 2018;47:31-44. https://doi.org/10.1016/j.media.2018.03.011
  38. Spadea MF, Pileggi G, Zaffino P, et al. Deep Convolution Neural Network (DCNN) Multiplane Approach to Synthetic CT Generation From MR images—Application in Brain Proton Therapy. International Journal of Radiation Oncology*Biology*Physics. 2019;105(3):495-503. https://doi.org/10.1016/j.ijrobp.2019.06.2535
  39. Alvarez Andres E, Fidon L, Vakalopoulou M, et al. Dosimetry-Driven Quality Measure of Brain Pseudo Computed Tomography Generated From Deep Learning for MRI-Only Radiation Therapy Treatment Planning. International Journal of Radiation Oncology*Biology*Physics. 2020;108(3):813-823. https://doi.org/10.1016/j.ijrobp.2020.05.006
  40. Li Y, Li W, Xiong J, Xia J, Xie Y. Comparison of Supervised and Unsupervised Deep Learning Methods for Medical Image Synthesis between Computed Tomography and Magnetic Resonance Images. Zhou Z, ed. BioMed Research International. 2020;2020(1). https://doi.org/10.1155/2020/5193707
  41. Massa HA, Johnson JM, McMillan AB. Comparison of deep learning synthesis of synthetic CTs using clinical MRI inputs. Phys Med Biol. 2020;65(23):23NT03. https://doi.org/10.1088/1361-6560/abc5cb
  42. Autret D, Guillerminet C, Roussel A, Cossec-Kerloc’h E, Dufreneix S. Comparison of four synthetic CT generators for brain and prostate MR-only workflow in radiotherapy. Radiat Oncol. 2023;18(1). https://doi.org/10.1186/s13014-023-02336-y
  43. Xue X, Ding Y, Shi J, et al. Cone Beam CT (CBCT) Based Synthetic CT Generation Using Deep Learning Methods for Dose Calculation of Nasopharyngeal Carcinoma Radiotherapy. Technol Cancer Res Treat. 2021;20. https://doi.org/10.1177/15330338211062415
  44. Zimmermann L, Knäusl B, Stock M, Lütgendorf-Caucig C, Georg D, Kuess P. An MRI sequence independent convolutional neural network for synthetic head CT generation in proton therapy. Zeitschrift für Medizinische Physik. 2022;32(2):218-227. https://doi.org/10.1016/j.zemedi.2021.10.003
  45. Wang Y, Liu C, Zhang X, Deng W. Synthetic CT Generation Based on T2 Weighted MRI of Nasopharyngeal Carcinoma (NPC) Using a Deep Convolutional Neural Network (DCNN). Front Oncol. 2019;9. https://doi.org/10.3389/fonc.2019.01333
  46. Qi M, Li Y, Wu A, et al. Multi-sequence MR image-based synthetic CT generation using a generative adversarial network for head and neck MRI-only radiotherapy. Medical Physics. 2020;47(4):1880-1894. https://doi.org/10.1002/mp.14075
  47. Aouadi S, Yoganathan S, Torfeh T, et al. Generation of synthetic CT from CBCT using deep learning approaches for head and neck cancer patients. Biomed Phys Eng Express. 2023;9(5):055020. https://doi.org/10.1088/2057-1976/acea27
  48. Chen L, Liang X, Shen C, Jiang S, Wang J. Synthetic CT generation from CBCT images via deep learning. Medical Physics. 2020;47(3):1115-1125. https://doi.org/10.1002/mp.13978
  49. Chen L, Liang X, Shen C, Nguyen D, Jiang S, Wang J. Synthetic CT generation from CBCT images via unsupervised deep learning. Phys Med Biol. 2021;66(11):115019. https://doi.org/10.1088/1361-6560/ac01b6
  50. de Koster RJC, Thummerer A, Scandurra D, Langendijk JA, Both S. Technical note: Evaluation of deep learning based synthetic CTs clinical readiness for dose and NTCP driven head and neck adaptive proton therapy. Medical Physics. 2023;50(12):8023-8033. https://doi.org/10.1002/mp.16782
  51. Jeon W, An HJ, Kim J in, et al. Preliminary Application of Synthetic Computed Tomography Image Generation from Magnetic Resonance Image Using Deep-Learning in Breast Cancer Patients. J Radiat Prot Res. 2019;44(4):149-155. https://doi.org/10.14407/jrpr.2019.44.4.149
  52. Olberg S, Zhang H, Kennedy WR, et al. Synthetic CT reconstruction using a deep spatial pyramid convolutional framework for MR-only breast radiotherapy. Medical Physics. 2019;46(9):4135-4147. https://doi.org/10.1002/mp.13716
  53. Florkow MC, Zijlstra F, Willemsen K, et al. Deep learning–based MR-to-CT synthesis: The influence of varying gradient echo–based MR images as input channels. Magnetic Resonance in Med. 2019;83(4):1429-1441. https://doi.org/10.1002/mrm.28008
  54. Liu L, Johansson A, Cao Y, Dow J, Lawrence TS, Balter JM. Abdominal synthetic CT generation from MR Dixon images using a U-net trained with ‘semi-synthetic’ CT data. Phys Med Biol. 2020;65(12):125001. https://doi.org/10.1088/1361-6560/ab8cd2
  55. Qian P, Xu K, Wang T, et al. Estimating CT from MR Abdominal Images Using Novel Generative Adversarial Networks. J Grid Computing. 2020;18(2):211-226. https://doi.org/10.1007/s10723-020-09513-3
  56. Parrella G, Vai A, Nakas A, et al. Synthetic CT in Carbon Ion Radiotherapy of the Abdominal Site. Bioengineering. 2023;10(2):250. https://doi.org/10.3390/bioengineering10020250
  57. Szmul A, Taylor S, Lim P, et al. Deep learning based synthetic CT from cone beam CT generation for abdominal paediatric radiotherapy. Phys Med Biol. 2023;68(10):105006. https://doi.org/10.1088/1361-6560/acc921
  58. Arabi H, Dowling JA, Burgos N, et al. Comparative study of algorithms for synthetic CT generation from MRI: Consequences for MRI-guided radiation planning in the pelvic region. Medical Physics. 2018;45(11):5218-5233. https://doi.org/10.1002/mp.13187
  59. Chen S, Qin A, Zhou D, Yan D. Technical Note: U-net-generated synthetic CT images for magnetic resonance imaging-only prostate intensity-modulated radiation therapy treatment planning. Medical Physics. 2018;45(12):5659-5665. https://doi.org/10.1002/mp.13247
  60. Florkow MC, Zijlstra F, Kerkmeijer LGW, et al. The impact of MRI-CT registration errors on deep learning-based synthetic CT generation. Angelini ED, Landman BA, eds. Medical Imaging 2019: Image Processing. Published online March 15, 2019:116 https://doi.org/10.1117/12.2512747
  61. Stadelmann JV, Schulz H, van der Heide UA, Renisch S. Pseudo-CT image generation from mDixon MRI images using fully convolutional neural networks. Gimi B, Krol A, eds. Medical Imaging 2019: Biomedical Applications in Molecular, Structural, and Functional Imaging. Published online March 15, 2019:33. https://doi.org/10.1117/12.2512741
  62. Bahrami A, Karimian A, Fatemizadeh E, Arabi H, Zaidi H. A new deep convolutional neural network design with efficient learning capability: Application to CT image synthesis from MRI. Medical Physics. 2020;47(10):5158-5171. https://doi.org/10.1002/mp.14418
  63. Fetty L, Löfstedt T, Heilemann G, et al. Investigating conditional GAN performance with different generator architectures, an ensemble model, and different MR scanners for MR-sCT conversion. Phys Med Biol. 2020;65(10):105004. https://doi.org/10.1088/1361-6560/ab857b
  64. Lena B, Florkow MC, Ferrer CJ, et al. Synthetic CT for the planning of MR-HIFU treatment of bone metastases in pelvic and femoral bones: a feasibility study. Eur Radiol. 2022;32(7):4537-4546. https://doi.org/10.1007/s00330-022-08568-y
  65. Wyatt JJ, Kaushik S, Cozzini C, et al. Comprehensive dose evaluation of a Deep Learning based synthetic Computed Tomography algorithm for pelvic Magnetic Resonance-only radiotherapy. Radiotherapy and Oncology. 2023;184:109692. https://doi.org/10.1016/j.radonc.2023.109692
  66. Bambach S, Ho ML. Deep Learning for Synthetic CT from Bone MRI in the Head and Neck. AJNR Am J Neuroradiol. 2022;43(8):1172-1179. https://doi.org/10.3174/ajnr.A7588
  67. Lei Y, Harms J, Wang T, et al. MRI-only based synthetic CT generation using dense cycle consistent generative adversarial networks. Medical Physics. 2019;46(8):3565-3581. https://doi.org/10.1002/mp.13617
  68. Shafai-Erfani G, Lei Y, Liu Y, et al. MRI-Based Proton Treatment Planning for Base of Skull Tumors. International Journal of Particle Therapy. 2019;6(2):12-25. https://doi.org/10.14338/IJPT-19-00062.1
  69. Kazemifar S, Barragán Montero AM, Souris K, et al. Dosimetric evaluation of synthetic CT generated with GANs for MRI-only proton therapy treatment planning of brain tumors. J Applied Clin Med Phys. 2020;21(5):76-86. https://doi.org/10.1002/acm2.12856
  70. Maspero M, Bentvelzen LG, Savenije MHF, et al. Deep learning-based synthetic CT generation for paediatric brain MR-only photon and proton radiotherapy. Radiotherapy and Oncology. 2020;153:197-204. https://doi.org/10.1016/j.radonc.2020.09.029
  71. Tang B, Wu F, Fu Y, et al. Dosimetric evaluation of synthetic CT image generated using a neural network for MR-only brain radiotherapy. J Applied Clin Med Phys. 2021;22(3):55-62. https://doi.org/10.1002/acm2.13176
  72. Wang CC, Wu PH, Lin G, et al. Magnetic Resonance-Based Synthetic Computed Tomography Using Generative Adversarial Networks for Intracranial Tumor Radiotherapy Treatment Planning. JPM. 2022;12(3):361. https://doi.org/10.3390/jpm12030361
  73. Klages P, Benslimane I, Riyahi S, et al. Comparison of Patch-Based Conditional Generative Adversarial Neural Net Models with Emphasis on Model Robustness for Use in Head and Neck Cases for MR-Only planning. Published online 2019. https://doi.org/10.48550/arXiv.1902.00536
  74. Peng Y, Chen S, Qin A, et al. Magnetic resonance-based synthetic computed tomography images generated using generative adversarial networks for nasopharyngeal carcinoma radiotherapy treatment planning. Radiotherapy and Oncology. 2020;150:217-224. https://doi.org/10.1016/j.radonc.2020.06.049
  75. Tie X, Lam S, Zhang Y, Lee K, Au K, Cai J. Pseudo-CT generation from multi-parametric MRI using a novel multi-channel multi-path conditional generative adversarial network for nasopharyngeal carcinoma patients. Medical Physics. 2020;47(4):1750-1762. https://doi.org/10.1002/mp.14062
  76. Xu K, Cao J, Xia K, et al. Multichannel Residual Conditional GAN-Leveraged Abdominal Pseudo-CT Generation via Dixon MR Images. IEEE Access. 2019;7:163823-163830. https://doi.org/10.1109/ACCESS.2019.2951924
  77. Cusumano D, Lenkowicz J, Votta C, et al. A deep learning approach to generate synthetic CT in low field MR-guided adaptive radiotherapy for abdominal and pelvic cases. Radiotherapy and Oncology. 2020;153:205-212. https://doi.org/10.1016/j.radonc.2020.10.018
  78. Fu J, Singhrao K, Cao M, et al. Generation of abdominal synthetic CTs from 0.35T MR images using generative adversarial networks for MR-only liver radiotherapy. Biomed Phys Eng Express. 2020;6(1):015033. https://doi.org/10.1088/2057-1976/ab6e1f
  79. Maspero M, Savenije MHF, Dinkla AM, et al. Dose evaluation of fast synthetic-CT generation using a generative adversarial network for general pelvis MR-only radiotherapy. Phys Med Biol. 2018;63(18):185001. https://doi.org/10.1088/1361-6560/aada6d
  80. Bird D, Nix MG, McCallum H, et al. Multicentre, deep learning, synthetic-CT generation for ano-rectal MR-only radiotherapy treatment planning. Radiotherapy and Oncology. 2021;156:23-28. https://doi.org/10.1016/j.radonc.2020.11.027
  81. Brou Boni KND, Klein J, Vanquin L, et al. MR to CT synthesis with multicenter data in the pelvic area using a conditional generative adversarial network. Phys Med Biol. 2020;65(7):075002. https://doi.org/10.1088/1361-6560/ab7633
  82. Cao G, Li Y, Wu S, et al. Clinical feasibility of MRI-based synthetic CT imaging in the diagnosis of lumbar disc herniation: a comparative study. Acta Radiol. 2023;65(1):41-48. https://doi.org/10.1177/02841851231169173
  83. Irmak S, Zimmermann L, Georg D, Kuess P, Lechner W. Cone beam CT based validation of neural network generated synthetic CTs for radiotherapy in the head region. Medical Physics. 2021;48(8):4560-4571. https://doi.org/10.1002/mp.14987
  84. Li W, Kazemifar S, Bai T, et al. Synthesizing CT images from MR images with deep learning: model generalization for different datasets through transfer learning. Biomed Phys Eng Express. 2021;7(2):025020. https://doi.org/10.1088/2057-1976/abe3a7
  85. Wang T, Lei Y, Fu Y, et al. A review on medical imaging synthesis using deep learning and its clinical applications. J Applied Clin Med Phys. 2020;22(1):11-36. https://doi.org/10.1002/acm2.13121
  86. McKenzie EM, Santhanam A, Ruan D, O’Connor D, Cao M, Sheng K. Multimodality image registration in the head-and-neck using a deep learning-derived synthetic CT as a bridge. Medical Physics. 2020;47(3):1094-1104. https://doi.org/10.1002/mp.13976
  87. Liu Y, Lei Y, Wang Y, et al. MRI-based treatment planning for proton radiotherapy: dosimetric validation of a deep learning-based liver synthetic CT generation method. Phys Med Biol. 2019;64(14):145015. https://doi.org/10.1088/1361-6560/ab25bc
  88. Dal Bello R, Lapaeva M, La Greca Saint-Esteven A, et al. Patient-specific quality assurance strategies for synthetic computed tomography in magnetic resonance-only radiotherapy of the abdomen. Physics and Imaging in Radiation Oncology. 2023;27:100464. https://doi.org/10.1016/j.phro.2023.100464
  89. Liu Y, Lei Y, Wang T, et al. MRI-based treatment planning for liver stereotactic body radiotherapy: validation of a deep learning-based synthetic CT generation method. The British Journal of Radiology. 2019;92(1100). https://doi.org/10.1259/bjr.20190067
  90. Prunaretty J, Güngör G, Gevaert T, et al. A multi-centric evaluation of self-learning GAN based pseudo-CT generation software for low field pelvic magnetic resonance imaging. Front Oncol. 2023;13. https://doi.org/10.3389/fonc.2023.1245054
  91. Tian L, Lühr A. Proton range uncertainty caused by synthetic computed tomography generated with deep learning from pelvic magnetic resonance imaging. Acta Oncologica. 2023;62(11):1461-1469. https://doi.org/10.1080/0284186X.2023.2256967
  92. Hemsley M, Chugh B, Ruschin M, et al. Deep Generative Model for Synthetic-CT Generation with Uncertainty Predictions. Lecture Notes in Computer Science. Published online 2020:834-844. https://doi.org/10.1007/978-3-030-59710-8_81
  93. Bourbonne V, Jaouen V, Hognon C, et al. Dosimetric Validation of a GAN-Based Pseudo-CT Generation for MRI-Only Stereotactic Brain Radiotherapy. Cancers. 2021;13(5):1082. https://doi.org/10.3390/cancers13051082
  94. Liu F, Yadav P, Baschnagel AM, McMillan AB. MR-based treatment planning in radiation therapy using a deep learning approach. J Applied Clin Med Phys. 2019;20(3):105-114. https://doi.org/10.1002/acm2.12554
  95. Lerner M, Medin J, Jamtheim Gustafsson C, Alkner S, Siversson C, Olsson LE. Clinical validation of a commercially available deep learning software for synthetic CT generation for brain. Radiat Oncol. 2021;16(1). https://doi.org/10.1186/s13014-021-01794-6
  96. Yang X, Feng B, Yang H, et al. CNN-based multi-modal radiomics analysis of pseudo-CT utilization in MRI-only brain stereotactic radiotherapy: a feasibility study. BMC Cancer. 2024;24(1). https://doi.org/10.1186/s12885-024-11844-3
  97. Thummerer A, de Jong BA, Zaffino P, et al. Comparison of the suitability of CBCT- and MR-based synthetic CTs for daily adaptive proton therapy in head and neck patients. Phys Med Biol. 2020;65(23):235036. https://doi.org/10.1088/1361-6560/abb1d6
  98. Palmér E, Karlsson A, Nordström F, et al. Synthetic computed tomography data allows for accurate absorbed dose calculations in a magnetic resonance imaging only workflow for head and neck radiotherapy. Physics and Imaging in Radiation Oncology. 2021;17:36-42. https://doi.org/10.1016/j.phro.2020.12.007
  99. Fu J, Yang Y, Singhrao K, et al. Deep learning approaches using 2D and 3D convolutional neural networks for generating male pelvic synthetic computed tomography from magnetic resonance imaging. Medical Physics. 2019;46(9):3788-3798. https://doi.org/10.1002/mp.13672
  100. Liu Y, Lei Y, Wang T, et al. CBCT-based synthetic CT generation using deep-attention cycleGAN for pancreatic adaptive radiotherapy. Medical Physics. 2020;47(6):2472-2483. https://doi.org/10.1002/mp.14121
  101. Liu X, Emami H, Nejad-Davarani SP, et al. Performance of deep learning synthetic CTs for MR-only brain radiation therapy. J Applied Clin Med Phys. 2021;22(1):308-317. https://doi.org/10.1002/acm2.13139
  102. Largent A, Marage L, Gicquiau I, et al. Head-and-Neck MRI-only radiotherapy treatment planning: From acquisition in treatment position to pseudo-CT generation. Cancer/Radiothérapie. 2020;24(4):288-297. https://doi.org/10.1016/j.canrad.2020.01.008
  103. Liu J, Yan H, Cheng H, et al. CBCT-based synthetic CT generation using generative adversarial networks with disentangled representation. Quant Imaging Med Surg. 2021;11(12):4820-4834. https://doi.org/10.21037/qims-20-1056
  104. Nie D, Cao X, Gao Y, Wang L, Shen D. Estimating CT Image from MRI Data Using 3D Fully Convolutional Networks. In: Carneiro, G., et al. Deep Learning and Data Labeling for Medical Applications. DLMIA LABELS 2016 2016. Lecture Notes in Computer Science. https://doi.org/10.1007/978-3-319-46976-8_18
  105. Xiang L, Wang Q, Nie D, et al. Deep embedding convolutional neural network for synthesizing CT image from T1-Weighted MR image. Medical Image Analysis. 2018;47:31-44. https://doi.org/10.1016/j.media.2018.03.011
  106. Pan S, Abouei E, Wynne J, et al. Synthetic CT generation from MRI using 3D transformer-based denoising diffusion model. Medical Physics. 2023;51(4):2538-2548. https://doi.org/10.1002/mp.16847
  107. Thummerer A, van der Bijl E, Galapon A Jr, et al. SynthRAD2023 Grand Challenge dataset: Generating synthetic CT for radiotherapy. Medical Physics. 2023;50(7):4664-4674. https://doi.org/10.1002/mp.16529
  108. Wang J, Zhu H, Wang SH, Zhang YD. A Review of Deep Learning on Medical Image Analysis. Mobile Netw Appl. 2020;26(1):351-380. https://doi.org/10.1007/s11036-020-01672-7
  109. Dinkla AM, Wolterink JM, Maspero M, et al. MR-Only Brain Radiation Therapy: Dosimetric Evaluation of Synthetic CTs Generated by a Dilated Convolutional Neural Network. International Journal of Radiation Oncology*Biology*Physics. 2018;102(4):801-812. https://doi.org/10.1016/j.ijrobp.2018.05.058
  110. Li W, Li Y, Qin W, et al. Magnetic resonance image (MRI) synthesis from brain computed tomography (CT) images based on deep learning methods for magnetic resonance (MR)-guided radiotherapy. Quant Imaging Med Surg. 2020;10(6):1223-1236. https://doi.org/10.21037/qims-19-885
  111. Wang C, Uh J, Merchant TE, Hua C ho, Acharya S. Facilitating MR-Guided Adaptive Proton Therapy in Children Using Deep Learning-Based Synthetic CT. International Journal of Particle Therapy. 2022;8(3):11-20. https://doi.org/10.14338/IJPT-20-00099.1
  112. Liu Y, Lei Y, Wang Y, et al. Evaluation of a deep learning-based pelvic synthetic CT generation technique for MRI-based prostate proton treatment planning. Phys Med Biol. 2019;64(20):205022. https://doi.org/10.1088/1361-6560/ab41af
  113. Bäumer C, Frakulli R, Kohl J, et al. Adaptive Proton Therapy of Pediatric Head and Neck Cases Using MRI-Based Synthetic CTs: Initial Experience of the Prospective KiAPT Study. Cancers. 2022;14(11):2616. https://doi.org/10.3390/cancers14112616
  114. Florkow MC, Guerreiro F, Zijlstra F, et al. Deep learning-enabled MRI-only photon and proton therapy treatment planning for paediatric abdominal tumours. Radiotherapy and Oncology. 2020;153:220-227. https://doi.org/10.1016/j.radonc.2020.09.056
DOI: https://doi.org/10.2478/pjmpe-2025-0003 | Journal eISSN: 1898-0309 | Journal ISSN: 1425-4689
Language: English
Page range: 20 - 38
Submitted on: Sep 17, 2024
Accepted on: Jan 10, 2025
Published on: Apr 2, 2025
Published by: Polish Society of Medical Physics
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2025 Isaac Kwesi Acquah, Shiraz Issahaku, Samuel Nii Adu Tagoe, published by Polish Society of Medical Physics
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.