Have a personal or library account? Click to login

Targeted alpha-particle therapy – possibilities of post-therapeutic imaging

Open Access
|Dec 2024

References

  1. Morgan KA, Rudd SE, Noor A, Donnelly PS. Theranostic Nuclear Medicine with Gallium-68, Lutetium-177, Copper-64/67, Actinium-225, and Lead-212/203 Radionuclides. Chem Rev. 2023;123(20):12004-12035. https://doi.org/10.1021/acs.chemrev.3c00456
  2. Leidermark E, Hallqvist A, Jacobsson L, et al. Estimating the Risk for Secondary Cancer After Targeted α-Therapy with211At Intraperitoneal Radioimmunotherapy. J Nucl Med. 2022;64(1):165-172. https://doi.org/10.2967/jnumed.121.263349
  3. Reinecke MJ, Ahlers G, Burchert A, et al. Second primary malignancies induced by radioactive iodine treatment of differentiated thyroid carcinoma — a critical review and evaluation of the existing evidence. Eur J Nucl Med Mol Imaging. 2022;49(9):3247-3256. https://doi.org/10.1007/s00259-022-05762-4
  4. Kunikowska J, Królicki L, Hubalewska-Dydejczyk A, Mikołajczak R, Sowa-Staszczak A, Pawlak D. Clinical results of radionuclide therapy of neuroendocrine tumours with 90Y-DOTATATE and tandem 90Y/177Lu-DOTATATE: which is a better therapy option? Eur J Nucl Med Mol Imaging. 2011;38(10):1788-1797. https://doi.org/10.1007/s00259-011-1833-x
  5. Baum RP, Kulkarni HR, Singh A, et al. Results and adverse events of personalized peptide receptor radionuclide therapy with 90Yttrium and 177Lutetium in 1048 patients with neuroendocrine neoplasms. Oncotarget. 2018;9(24):16932-16950. https://doi.org/10.18632/oncotarget.24524
  6. Hänscheid H, Lassmann M, Verburg FA. Determinants of target absorbed dose in radionuclide therapy. Zeitschrift für Medizinische Physik. 2023;33(1):82-90. https://doi.org/10.1016/j.zemedi.2022.10.001
  7. Pouget JP, Constanzo J. Revisiting the Radiobiology of Targeted Alpha Therapy. Front Med. 2021;8. https://doi.org/10.3389/fmed.2021.692436
  8. Poty S, Francesconi LC, McDevitt MR, Morris MJ, Lewis JS. α-Emitters for Radiotherapy: From Basic Radiochemistry to Clinical Studies—Part 1. J Nucl Med. 2018;59(6):878-884. https://doi.org/10.2967/jnumed.116.186338
  9. Sgouros G, Roeske JC, McDevitt MR, et al. MIRD Pamphlet No. 22 (Abridged): Radiobiology and Dosimetry of α-Particle Emitters for Targeted Radionuclide Therapy. J Nucl Med. 2010;51(2):311-328. https://doi.org/10.2967/jnumed.108.058651
  10. Koh T, Bezak E, Chan D, Cehic G. Targeted alpha-particle therapy in neuroendocrine neoplasms: A systematic review. World J Nucl Med. 2021;20(04):329-335. https://doi.org/10.4103/wjnm.wjnm_160_20
  11. Shi M, Jakobsson V, Greifenstein L, et al. Alpha-peptide receptor radionuclide therapy using actinium-225 labeled somatostatin receptor agonists and antagonists. Front Med. 2022;9. https://doi.org/10.3389/fmed.2022.1034315
  12. Parker C, Nilsson S, Heinrich D, et al. Alpha Emitter Radium-223 and Survival in Metastatic Prostate Cancer. N Engl J Med. 2013;369(3):213-223. https://doi.org/10.1056/nejmoa1213755
  13. Zhang J, Qin S, Yang M, Zhang X, Zhang S, Yu F. Alpha-emitters and targeted alpha therapy in cancer treatment. iRADIOLOGY. 2023;1(3):245-261. https://doi.org/10.1002/ird3.30
  14. Jabbar T, Bashir S, Babar MI. Review of current status of targeted alpha therapy in cancer treatment. Nucl Med Rev. 2023;26(0):54-67. https://doi.org/10.5603/nmr.2023.0003
  15. Kunikowska J, Morgenstern A, Pełka K, Bruchertseifer F, Królicki L. Targeted alpha therapy for glioblastoma. Front Med. 2022;9. https://doi.org/10.3389/fmed.2022.1085245
  16. Seo Y. Quantitative Imaging of Alpha-Emitting Therapeutic Radiopharmaceuticals. Nucl Med Mol Imaging. 2019;53(3):182-188. https://doi.org/10.1007/s13139-019-00589-8
  17. Lassmann M, Eberlein U. Targeted alpha-particle therapy: imaging, dosimetry, and radiation protection. Ann ICRP. 2018;47(3-4):187-195. https://doi.org/10.1177/0146645318756253
  18. Hindorf C, Chittenden S, Aksnes AK, Parker C, Flux GD. Quantitative imaging of 223Ra-chloride (Alpharadin) for targeted alpha-emitting radionuclide therapy of bone metastases. Nuclear Medicine Communications. 2012;33(7):726-732. https://doi.org/10.1097/mnm.0b013e328353bb6e
  19. Carrasquillo JA, O’Donoghue JA, Pandit-Taskar N, et al. Phase I pharmacokinetic and biodistribution study with escalating doses of 223Ra-dichloride in men with castration-resistant metastatic prostate cancer. Eur J Nucl Med Mol Imaging. 2013;40(9):1384-1393. https://doi.org/10.1007/s00259-013-2427-6
  20. Chittenden SJ, Hindorf C, Parker CC, et al. A Phase 1, Open-Label Study of the Biodistribution, Pharmacokinetics, and Dosimetry of 223Ra-Dichloride in Patients with Hormone-Refractory Prostate Cancer and Skeletal Metastases. J Nucl Med. 2015;56(9):1304-1309. https://doi.org/10.2967/jnumed.115.157123
  21. Yoshida K, Kaneta T, Takano S, et al. Pharmacokinetics of single dose radium-223 dichloride (BAY 88-8223) in Japanese patients with castration-resistant prostate cancer and bone metastases. Ann Nucl Med. 2016;30(7):453-460. https://doi.org/10.1007/s12149-016-1093-8
  22. Pacilio M, Ventroni G, De Vincentis G, et al. Dosimetry of bone metastases in targeted radionuclide therapy with alpha-emitting 223Ra-dichloride. Eur J Nucl Med Mol Imaging. 2015;43(1):21-33. https://doi.org/10.1007/s00259-015-3150-2
  23. Murray I, Rojas B, Gear J, Callister R, Cleton A, Flux GD. Quantitative Dual-Isotope Planar Imaging of Thorium-227 and Radium-223 Using Defined Energy Windows. Cancer Biotherapy and Radiopharmaceuticals. 2020;35(7):530-539. https://doi.org/10.1089/cbr.2019.3554
  24. Sgouros G, Ballangrud AM, Jurcic JG, et al. Pharmacokinetics and Dosimetry of an α-Particle Emitter Labeled Antibody: 213Bi-HuM195 (Anti-CD33) in Patients with Leukemia. J Nucl Med. 1999;40:1935-1949.
  25. Cordier D, Forrer F, Bruchertseifer F, et al. Targeted alpha-radionuclide therapy of functionally critically located gliomas with 213Bi-DOTA-[Thi8,Met(O2)11]-substance P: a pilot trial. Eur J Nucl Med Mol Imaging. 2010;37(7):1335-1344. https://doi.org/10.1007/s00259-010-1385-5
  26. Kratochwil C, Bruchertseifer F, Giesel FL, et al. 225Ac-PSMA-617 for PSMA-Targeted α-Radiation Therapy of Metastatic Castration-Resistant Prostate Cancer. J Nucl Med. 2016;57(12):1941-1944. https://doi.org/10.2967/jnumed.116.178673
  27. Kamaleshwaran K, Suneelkumar M, Madhusairam R, Radhakrishnan E, Arunpandiyan S, Arnold V. Whole-body and single-photon emission computed tomography/computed tomography postpeptide receptor alpha radionuclide therapy images of actinium 225-tetraazacyclododecanetetraacetic Acid–Octreotide as a primary modality of treatment in a patient with advanced rectal neuroendocrine tumor with metastases. Indian J Nucl Med. 2020;35(3):226. https://doi.org/10.4103/ijnm.ijnm_58_20
  28. Ocak M, Toklu T, Demirci E, Selçuk N, Kabasakal L. Post-therapy imaging of 225Ac-DOTATATE treatment in a patient with recurrent neuroendocrine tumor. Eur J Nucl Med Mol Imaging. 2020;47(11):2711-2712. https://doi.org/10.1007/s00259-020-04725-x
  29. Gosewisch A, Schleske M, Gildehaus FJ, et al. Image-based dosimetry for 225Ac-PSMA-I&T therapy using quantitative SPECT. Eur J Nucl Med Mol Imaging. 2020;48(4):1260-1261. https://doi.org/10.1007/s00259-020-05024-1
  30. Delker A, Schleske M, Liubchenko G, et al. Biodistribution and dosimetry for combined [177Lu]Lu-PSMA-I&T/[225Ac]Ac-PSMA-I&T therapy using multi-isotope quantitative SPECT imaging. Eur J Nucl Med Mol Imaging. 2023;50(5):1280-1290. https://doi.org/10.1007/s00259-022-06092-1
  31. Benabdallah N, Scheve W, Dunn N, et al. Practical considerations for quantitative clinical SPECT/CT imaging of alpha particle emitting radioisotopes. Theranostics. 2021;11(20):9721-9737. https://doi.org/10.7150/thno.63860
  32. Liubchenko G, Böning G, Zacherl M, et al. Image-based dosimetry for [225Ac]Ac-PSMA-I&T therapy and the effect of daughter-specific pharmacokinetics. Eur J Nucl Med Mol Imaging. 2024;51(8):2504-2514. https://doi.org/10.1007/s00259-024-06681-2
  33. Tulik M, Kuliński R, Tabor Z, et al. Quantitative SPECT/CT imaging of actinium-225 for targeted alpha therapy of glioblastomas. EJNMMI Phys. 2024;11(1). https://doi.org/10.1186/s40658-024-00635-1
  34. Takahashi A, Kajiya R, Baba S, Sasaki M. Monte Carlo simulation study to explore optimum conditions for Astatine-211 SPECT. Radiol Phys Technol. 2023;16(1):102-108. https://doi.org/10.1007/s12194-023-00702-9
  35. Turkington TG, Zalutsky MR, Jaszczak RJ, Garg PK, Vaidyanathan G, Coleman RE. Phys Med Biol. 1993;38(8):1121-1130. https://doi.org/10.1088/0031-9155/38/8/010
  36. Müller C, Vermeulen C, Köster U, et al. Alpha-PET with terbium-149: evidence and perspectives for radiotheragnostics. EJNMMI radiopharm chem. 2016;1(1). https://doi.org/10.1186/s41181-016-0008-2
  37. Mikalsen LTG, Kvassheim M, Stokke C. Optimized SPECT Imaging of224Ra α-Particle Therapy by212Pb Photon Emissions. J Nucl Med. 2023;64(7):1131-1137. https://doi.org/10.2967/jnumed.122.264455
  38. Kvassheim M, Tornes AJK, Juzeniene A, Stokke C, Revheim MER. Imaging of 212Pb in mice with a clinical SPECT/CT. EJNMMI Phys. 2023;10(1). https://doi.org/10.1186/s40658-023-00571-6
  39. Kvassheim M, Revheim MER, Stokke C. Quantitative SPECT/CT imaging of lead-212: a phantom study. EJNMMI Phys. 2022;9(1). https://doi.org/10.1186/s40658-022-00481-z
  40. Meredith RF, Torgue J, Azure MT, et al. Pharmacokinetics and Imaging of212Pb-TCMC-Trastuzumab After Intraperitoneal Administration in Ovarian Cancer Patients. Cancer Biotherapy and Radiopharmaceuticals. 2014;29(1):12-17. https://doi.org/10.1089/cbr.2013.1531
DOI: https://doi.org/10.2478/pjmpe-2024-0030 | Journal eISSN: 1898-0309 | Journal ISSN: 1425-4689
Language: English
Submitted on: Jul 31, 2024
Accepted on: Nov 6, 2024
Published on: Dec 23, 2024
Published by: Polish Society of Medical Physics
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2024 Monika Tulik, Jolanta Kunikowska, published by Polish Society of Medical Physics
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.