Have a personal or library account? Click to login

Investigation of FLUKA Monte Carlo code to study the influence of degrader and initial proton energy in the Bragg peak position

Open Access
|Nov 2024

References

  1. Frenk J. Cancer is on the rise in developing countries. Harvard T.H. Chan School of Public Health. Available at: https://www.hsph.harvard.edu/news/magazine/shadow-epidemic/
  2. Cancer. World Health Organization. Available at: https://www.who.int/news-room/fact-sheets/detail/cancer
  3. Wiik BH. Rolf Wideröe and the Development of Particle Accelerators. Acta Oncologica. 1998;37(6):615-625. https://doi.org/10.1080/028418698430322
  4. Lawrence EO, Edlefsen NE. On the production of high speed protons. Science. 1930;72:376
  5. Wilson RR. Radiological Use of Fast Protons. Radiology. 1946;47(5):487-491. https://doi.org/10.1148/47.5.487
  6. Slater JM, Archambeau JO, Miller DW, Notarus MI, Preston W, Slater JD. The proton treatment center at Loma Linda University Medical Center: Rationale for and description of its development. International Journal of Radiation Oncology*Biology*Physics. 1992;22(2):383-389. https://doi.org/10.1016/0360-3016(92)90058-p
  7. Dowdell SJ. Pencil beam scanning proton therapy: the significance of secondary particles. Doctor of Philosophy thesis. University of Wollongong. Centre for Radiation Physics, University of Wollongong, 2011. https://ro.uow.edu.au/theses/3275
  8. Konski A, Speier W, Hanlon A, Beck JR, Pollack A. Is Proton Beam Therapy Cost Effective in the Treatment of Adenocarcinoma of the Prostate? JCO. 2007;25(24):3603-3608. https://doi.org/10.1200/jco.2006.09.0811
  9. Björk-Eriksson T, Glimelius B. The potential of proton beam therapy in paediatric cancer. Acta Oncologica. 2005;44(8):871-875. https://doi.org/10.1080/02841860500355959
  10. Schippers JM, Lomax A, Garonna A, Parodi K. Can Technological Improvements Reduce the Cost of Proton Radiation Therapy? Seminars in Radiation Oncology. 2018;28(2):150-159. https://doi.org/10.1016/j.semradonc.2017.11.007
  11. Schulte R, Johnstone C, Boucher S, et al. Transformative Technology for FLASH Radiation Therapy. Applied Sciences. 2023;13(8):5021. https://doi.org/10.3390/app13085021
  12. Schippers JM, Lomax AJ. Emerging technologies in proton therapy. Acta Oncologica. 2011;50(6):838-850. https://doi.org/10.3109/0284186x.2011.582513
  13. Bloch C, Hill PM, Chen KL, Saito A, Klein EE. Startup of the Kling Center for Proton Therapy. AIP Conference Proceedings. Published online 2013:314-318. https://doi.org/10.1063/1.4802340
  14. Michaelidesová A, Vachelová J, Puchalska M, et al. Relative biological effectiveness in a proton spread-out Bragg peak formed by pencil beam scanning mode. Australas Phys Eng Sci Med. 2017;40(2):359-368. https://doi.org/10.1007/s13246-017-0540-8
  15. Combs SE, Ellerbrock M, Haberer T, et al. Heidelberg Ion Therapy Center (HIT): Initial clinical experience in the first 80 patients. Acta Oncologica. 2010;49(7):1132-1140. https://doi.org/10.3109/0284186x.2010.498432
  16. Kostromin SA, Syresin EM. Trends in accelerator technology for hadron therapy. Phys Part Nuclei Lett. 2013;10(7):833-853. https://doi.org/10.1134/s1547477114010154
  17. Titt U, Zheng Y, Vassiliev ON, Newhauser WD. Monte Carlo investigation of collimator scatter of proton-therapy beams produced using the passive scattering method. Phys Med Biol. 2007;53(2):487-504. https://doi.org/10.1088/0031-9155/53/2/014
  18. Chen KL, Bloch CD, Hill PM, Klein EE. Evaluation of neutron dose equivalent from the Mevion S250 proton accelerator: measurements and calculations. Phys Med Biol. 2013;58(24):8709-8723. https://doi.org/10.1088/0031-9155/58/24/8709
  19. Parodi K, Enghardt W. Potential application of PET in quality assurance of proton therapy. Phys Med Biol. 2000;45(11):N151-N156. https://doi.org/10.1088/0031-9155/45/11/403
  20. Bragg WH, Kleeman R. XXXIX. On the α particles of radium, and their loss of range in passing through various atoms and molecules. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science. 1905;10(57):318-340. https://doi.org/10.1080/14786440509463378
  21. Cameron J, Schreuder N. Smaller – Lighter – Cheaper: New Technological Concepts in Proton Therapy. Biological and Medical Physics, Biomedical Engineering. Published online September 6, 2011:673-685. https://doi.org/10.1007/978-3-642-21414-1_40
  22. ICRU Report 49, International Commission on Radiation Units and Measurements: Stopping Powers and Ranges for Protons and Alpha Particles (Bethesda, Maryland, USA). 1993.
  23. Pavlovič M, Hammerle A. Ranges of protons in biological targets. Journal of Electrical Engineering. 2017;68(4):306-311. https://doi.org/10.1515/jee-2017-0043
  24. Linz U, ed. Ion Beam Therapy. Springer Berlin Heidelberg; 2012. https://doi.org/10.1007/978-3-642-21414-1
  25. Sølie JR, Pettersen HES, Meric I, Odland OH, Helstrup H, Röhrich D. A comparison of proton ranges in complex media using GATE/Geant4, MCNP6 and FLUKA. Published online 2017. https://doi.org/10.48550/ARXIV.1708.00668
  26. Ekinci F, Bostanci E, Dagli Ö, Guzel MS. Analysis of Bragg curve parameters and lateral straggle for proton and carbon beams. CommunFacSciUnivAnkSeries A2-A3: PhysSci and Eng. 2021;63(1):32-41. https://doi.org/10.33769/aupse.864475
  27. Hu M, Jiang L, Cui X, Zhang J, Yu J. Proton beam therapy for cancer in the era of precision medicine. J Hematol Oncol. 2018;11(1). https://doi.org/10.1186/s13045-018-0683-4
DOI: https://doi.org/10.2478/pjmpe-2024-0025 | Journal eISSN: 1898-0309 | Journal ISSN: 1425-4689
Language: English
Page range: 204 - 212
Submitted on: Dec 18, 2023
Accepted on: Aug 13, 2024
Published on: Nov 7, 2024
Published by: Polish Society of Medical Physics
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2024 Abdelkrim Zeghari, Youssef Bouzekraoui, Karim Bahhous, Nourddine Slassi, Rajaa Cherkaoui El Moursli, published by Polish Society of Medical Physics
This work is licensed under the Creative Commons Attribution 4.0 License.