Have a personal or library account? Click to login
Investigation of the impact of local properties of 3D data on the accuracy of block matching-based speckle tracking echocardiography Cover

Investigation of the impact of local properties of 3D data on the accuracy of block matching-based speckle tracking echocardiography

Open Access
|Oct 2024

References

  1. Alessandrini M, Heyde B, Queiros S, et al. Detailed Evaluation of Five 3D Speckle Tracking Algorithms Using Synthetic Echocardiographic Recordings. IEEE Trans Med Imaging. 2016;35(8):1915-1926. https://doi.org/10.1109/tmi.2016.2537848
  2. Larsson M, Kremer F, Claus P, Brodin LA, D’hooge J. A novel measure to express tracking quality in ultrasound block matching. 2010 IEEE International Ultrasonics Symposium. 2010;28:1636-1639. https://doi.org/10.1109/ultsym.2010.5935715
  3. D’hooge J, Barbosa D, Gao H, et al. Two-dimensional speckle tracking echocardiography: standardization efforts based on synthetic ultrasound data. Eur Heart J Cardiovasc Imaging. 2015;17(6):693-701. https://doi.org/10.1093/ehjci/jev197
  4. Jasaityte R, Heyde B, D’hooge J. Current State of Three-Dimensional Myocardial Strain Estimation Using Echocardiography. Journal of the American Society of Echocardiography. 2013;26(1):15-28. https://doi.org/10.1016/j.echo.2012.10.005
  5. Lesniak-Plewinska B, Cygan S, Kaluzynski K, et al. A Dual-Chamber, Thick-Walled Cardiac Phantom for Use in Cardiac Motion and Deformation Imaging by Ultrasound. Ultrasound in Medicine & Biology. 2010;36(7):1145-1156. https://doi.org/10.1016/j.ultrasmedbio.2010.04.008
  6. Heyde B, Cygan S, Hon Fai Choi, et al. Regional cardiac motion and strain estimation in three-dimensional echocardiography: a validation study in thick-walled univentricular phantoms. IEEE Trans Ultrason, Ferroelect, Freq Contr. 2012;59(4):668-682. https://doi.org/10.1109/tuffc.2012.2245
  7. Cygan S, Kumor M, Żmigrodzki J, Leśniak-Plewińska B, Kowalski M, Kałużyński K. Left ventricular phantoms with inclusions simulating transmural and non-transmural infarctions: FEM and EchoPAC study. Duric N, Heyde B, eds. SPIE Proceedings. 2017;10139:1013918. https://doi.org/10.1117/12.2254350
  8. De Craene M, Marchesseau S, Heyde B, et al. 3D Strain Assessment in Ultrasound (Straus): A Synthetic Comparison of Five Tracking Methodologies. IEEE Trans Med Imaging. 2013;32(9):1632-1646. https://doi.org/10.1109/tmi.2013.2261823
  9. Zmigrodzki J, Cygan S, Wilczewska A, Kaluzynski K. Quantitative Assessment of the Effect of the Out-of-Plane Movement of the Homogenous Ellipsoidal Model of the Left Ventricle on the Deformation Measures Estimated Using 2-D Speckle Tracking—An In-Silico Study. IEEE Trans Ultrason, Ferroelect, Freq Contr. 2018;65(10):1789-1803. https://doi.org/10.1109/tuffc.2018.2856127
  10. Wilczewska A, Cygan S, Żmigrodzki J. Segmentation Enhanced Elastic Image Registration for 2D Speckle Tracking Echocardiography—Performance Study In Silico. Ultrason Imaging. 2022;44(1):39-54. https://doi.org/10.1177/01617346211068812
  11. Voigt JU, Pedrizzetti G, Lysyansky P, et al. Definitions for a common standard for 2D speckle tracking echocardiography: consensus document of the EACVI/ASE/Industry Task Force to standardize deformation imaging. European Heart Journal - Cardiovascular Imaging. 2014;16(1):1-11. https://doi.org/10.1093/ehjci/jeu184
  12. Heyde B, Alessandrini M, Hermans J, Barbosa D, Claus P, D’hooge J. Anatomical Image Registration Using Volume Conservation to Assess Cardiac Deformation From 3D Ultrasound Recordings. IEEE Trans Med Imaging. 2016;35(2):501-511. https://doi.org/10.1109/tmi.2015.2479556
  13. Chapelle D, Le Tallec P, Moireau P, Sorine M. An energy-preserving muscle tissue model: formulation and compatible discretizations. Int J Mult Comp Eng. 2012;10(2):189-211. https://doi.org/10.1615/intjmultcompeng.2011002360
  14. Hang Gao, Hon Fai Choi, Claus P, et al. A fast convolution-based methodology to simulate 2-Dd/3-D cardiac ultrasound images. IEEE Trans Ultrason, Ferroelect, Freq Contr. 2009;56(2):404-409. https://doi.org/10.1109/tuffc.2009.1051
  15. Alessandrini M, De Craene M, Bernard O, et al. A Pipeline for the Generation of Realistic 3D Synthetic Echocardiographic Sequences: Methodology and Open-Access Database. IEEE Trans Med Imaging. 2015;34(7):1436-1451. https://doi.org/10.1109/tmi.2015.2396632
  16. Guyon I, Elisseeff A. An introduction to variable and feature selection. J Mach Learn Res. 2003;(3):1157-1182.
  17. Wuensch KL, Evans JD. Straightforward Statistics for the Behavioral Sciences. Journal of the American Statistical Association. 1996;91(436):1750. https://doi.org/10.2307/2291607
DOI: https://doi.org/10.2478/pjmpe-2024-0019 | Journal eISSN: 1898-0309 | Journal ISSN: 1425-4689
Language: English
Page range: 161 - 168
Submitted on: Mar 14, 2024
Accepted on: Jul 15, 2024
Published on: Oct 3, 2024
Published by: Polish Society of Medical Physics
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2024 Szymon Cygan, Aleksandra Wilczewska, Tomasz Kubik, Martino Alessandrini, published by Polish Society of Medical Physics
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.