References
- World Health Organization. The top 10 causes of death. WHO Newsroom Fact sheet Detail. Published January, 2019. Accessed November 2023. https://www.who.int/news-room/fact-sheets/detail/the-top-10-causes-of-death.
- Prisk GK. Microgravity and the respiratory system. European Respiratory Journal. 2014;43(5):1459-1471. https://doi.org/10.1183/09031936.00001414
- Vidal Melo MF. Effect of cardiac output on pulmonary gas exchange: role of diffusion limitation with V̇a/Q̇ mismatch. Respiration Physiology. 1998;113(1):23-32. https://doi.org/10.1016/S0034-5687(98)00042-5
- Lumb AB. Nunn’s Applied Respiratory Physiology. 8th Edition. Elsevier Health Sciences; 2016.
- Instytut Biochemii i Biofizyki PAN. VirRespir. Biocentrum Ochota. Published 2017. Accessed November, 2023. http://bco.ibb.waw.pl/en/bio-med-en/virrespir-en,79/
- West JB, Dollery CT. Distribution of blood flow and ventilation-perfusion ratio in the lung, measured with radioactive CO2. Journal of Applied Physiology. 1960;15:405-410. https://doi.org/10.1152/jappl.1960.15.3.405
- Glenny RW, Bernard S, Robertson HT, Hlastala MP. Gravity is an important but secondary determinant of regional pulmonary blood flow in upright primates. Journal of Applied Physiology. 1999;86(2): 623-632. https://doi.org/10.1152/jappl.1999.86.2.623
- Fresiello L, Zielinski K, Jacobs S, et al. Reproduction of continuous flow left ventricular assist device experimental data by means of a hybrid cardiovascular model with baroreflex control. Artificial Organs. 2014;38(6):456-468. https://doi.org/10.1111/aor.12178
- Gólczewski T, Darowski M. Virtual respiratory system for education and research: simulation of expiratory flow limitation for spirometry. The International Journal of Artificial Organs. 2006;29(10):961-972. https://doi.org/10.1177/039139880602901007
- Darowski M, Gólczewski T, Michnikowski M. Choice of proper lung ventilation method. Biocybernetics and Biomedical Engineering. 2006;26(1):21-37.
- Gólczewski T, Darowski M. Virtual respiratory system in investigation of CPAP influence on optimal breathing frequency in obstructive lungs disease. Nonlinear Biomedical Physic. 2007;1(6). https://doi.org/10.1186%2F1753-4631-1-6
- Gólczewski T. Gas exchange in virtual respiratory system - simulation of ventilation without lungs movement. The International Journal of Artificial Organs. 2007;30(12):1047-1056. https://doi.org/10.1177/039139880703001204
- Gólczewski T, Darowski M. The virtual cardio-respiratory system - a sub-model of gas exchange and transfer. Biocybernetics and Biomedical Engineering. 2008;28(1):29-40. https://ibib.waw.pl/images/ibib/grupy/Wydawnictwa-Tomy/dokumenty/2008/BBE_28_1_029_FT.pdf
- Gólczewski T, Zieliński K, Ferrari G, Pałko KJ, Darowski M. Influence of ventilation mode on blood oxygenation - investigation with Polish Virtual Lungs and Italian Model of Circulation. Biocybernetics and Biomedical Engineering. 2010;30(1):17-30. https://www.ibib.waw.pl/images/ibib/grupy/Wydawnictwa-Tomy/dokumenty/2010/BBE_30_1_017_FT.pdf
- Gólczewski T, Zieliński K, Pałko KJ, Darowski M. A model of pulmonary circulation for cardiopulmonary interaction analysis. The International Journal of Artificial Organs. 2010;33(7):450-450.
- Gólczewski T, Pałko KJ. A method for quantification of lung resistive and compliant properties for spirometry interpretation support - tests on a virtual patient. Biocybernetics and Biomedical Engineering. 2013;33(3):136-144. https://doi.org/10.1016/j.bbe.2013.07.002
- Pałko KJ, Kołodziej D, Gólczewski T, Zieliński K, Darowski M. A lungs partition for simulations of cardiopulmonary interactions in a virtual patient. The International Journal of Artificial Organs. 2010;33(7):451-451.
- Tawhai MH, Lin CL. Image-based modeling of lung structure and function. Journal of Magnetic Resonance Imaging. 2010;32(6):1421-1431. https://doi.org/10.1002/jmri.22382
- Spencer RM, Schroeter JD, Martonen TB. Computer simulations of lung airway structures using data-driven surface modeling techniques. Computers in Biology and Medicine. 2001;31(6):499–511. https://doi.org/10.1016/S0010-4825(01)00020-8
- Burton RT, Isaacs KK, Fleming JS, Martonen TB. Computer Reconstruction of a Human Lung Boundary Model From Magnetic Resonance Images. Respiratory Care. 2004;49(2):180-185. https://rc.rcjournal.com/content/respcare/49/2/180.full.pdf
- Varner VD, Nelson CM. Computational models of airway branching morphogenesis. Seminars in Cell & Developmental Biology. 2017;67:170–176. https://doi.org/10.1016/j.semcdb.2016.06.003
- Putz R, Pabst R. Sobotta Atlas of human anatomy - volumes 1 and 2 [Original title: Atlas anatomii człowieka – tom 1 i 2], Urban & Partner 2006, ISBN 9788389581099 [In Polish]
- Rosati Rowe JA, Burton R, McGregor G, McCauley R, Tang W, Spencer R. Development of a three-dimensional model of the human respiratory system for dosimetric use. Theoretical Biology and Medical Modelling. 2013;10(28). https://doi.org/10.1186/1742-4682-10-28
- Li C, Cai Y, Wang W, et al. Combined application of virtual surgery and 3D printing technology in postoperative reconstruction of head and neck cancers. BMC Surgery. 2019;19:182. https://doi.org/10.1186/s12893-019-0616-3
- Bergquist JR, Morris JM, Matsumoto JM, Schiller HJ, Kim BD. 3D printed modeling contributes to reconstruction of complex chest wall instability. Trauma Case Reports. 2019;22:100218. https://doi.org/10.1016/j.tcr.2019.100218
- Chen Y, Zhang J, Chen Q, et al. Three-dimensional printing technology for localised thoracoscopic segmental resection for lung cancer: a quasi-randomised clinical trial. World Journal of Surgical Oncology. 2020;18:223. https://doi.org/10.1186/s12957-020-01998-2
- Buess A, Van Muylem A, Nonclercq A, Haut B. Modeling of the Transport and Exchange of a Gas Species in Lungs With an Asymmetric Branching Pattern. Application to Nitric Oxide. Frontiers in Physiology. 2020;11:570015. https://doi.org/10.3389/fphys.2020.570015
- Mei K, Geagan M, Roshkovan L, et. al. Three-dimensional printing of patient-specific lung phantoms for CT imaging: Emulating lung tissue with accurate attenuation profiles and textures. Medical Physics. 2022;49(2):825-835. https://doi.org/10.1002/mp.15407
- Maghsoudi-Ganjeh M, Mariano CA, Sattari S, Arora H, Eskandari M. Developing a Lung Model in the Age of COVID-19: A Digital Image Correlation and Inverse Finite Element Analysis Framework. Frontiers in Bioengineering and Biotechnology. 2021;9:684778. https://doi.org/10.3389/fbioe.2021.684778
- Liu G, Bian W, Zu G, et al. Development of a 3D Printed Lung Model Made of Synthetic Materials for Simulation. The Thoracic and Cardiovascular Surgeon. 2022;70(4):355-360. https://doi.org/10.1055/s-0041-1731783
- Higgins M, Leung S, Radacsi N. 3D printing surgical phantoms and their role in the visualization of medical procedures. Annals of 3D Printed Medicine. 2022;6:100057. https://doi.org/10.1016/j.stlm.2022.100057
- Yilmaz B, Yilmaz Kara B. Mathematical surface function-based design and 3D printing of airway stents. 3D Printing in Medicine. 2022;8(1):24. https://doi.org/10.1186/s41205-022-00154-8
- National Cancer Institute. Lung Cancer Modeling. Cancer Intervention and Surveillance Modeling Network. Published 2014. Accessed November, 2023. https://cisnet.cancer.gov/lung