References
- Gautam A, Raman B. Towards effective classification of brain hemorrhagic and ischemic stroke using CNN. Biomedical Signal Processing and Control. 2021;63:102178. https://doi.org/10.1016/j.bspc.2020.102178
- Jayachitra S, Prasanth A. Multi-Feature Analysis for Automated Brain Stroke Classification Using Weighted Gaussian Naïve Bayes Classifier. J CIRCUIT SYST COMP. 2021;30(10):2150178. https://doi.org/10.1142/S0218126621501784
- Karadima O, Rahman M, Sotiriou I, et al. Experimental Validation of Microwave Tomography with the DBIM-TwIST Algorithm for Brain Stroke Detection and Classification. Sensors. 2020;20(3):840. https://doi.org/10.3390/s20030840
- Öman O, Mäkelä T, Salli E, Savolainen S, Kangasniemi M. 3D convolutional neural networks applied to CT angiography in the detection of acute ischemic stroke. Eur Radiol Exp. 2019;3(1). https://doi.org/10.1186/s41747-019-0085-6
- Abramova V, Clèrigues A, Quiles A, et al. Hemorrhagic stroke lesion segmentation using a 3D U-Net with squeeze-and-excitation blocks. Computerized Medical Imaging and Graphics. 2021;90:101908. https://doi.org/10.1016/j.compmedimag.2021.101908
- Mansour RF, Aljehane NO. An optimal segmentation with deep learning based inception network model for intracranial hemorrhage diagnosis. Neural Comput & Applic. 2021;33(20):13831-13843. https://doi.org/10.1007/s00521-021-06020-8
- Inkeaw P, Angkurawaranon S, Khumrin P, et al. Automatic hemorrhage segmentation on head CT scan for traumatic brain injury using 3D deep learning model. Computers in Biology and Medicine. 2022;146:105530. https://doi.org/10.1016/j.compbiomed.2022.105530
- Arab A, Chinda B, Medvedev G, et al. A fast and fully-automated deep-learning approach for accurate hemorrhage segmentation and volume quantification in non-contrast whole-head CT. Sci Rep. 2020;10(1). https://doi.org/10.1038/s41598-020-76459-7
- Chen YT, Chen YL, Chen YY, et al. Deep Learning–Based Brain Computed Tomography Image Classification with Hyperparameter Optimization through Transfer Learning for Stroke. Diagnostics. 2022;12(4):807. https://doi.org/10.3390/diagnostics12040807
- URAL AB. Computer-Aided Deep Learning Based Assessment of Stroke From Brain Radiological CT Images. European Journal of Science and Technology. 2022;34:42-52. https://doi.org/10.31590/ejosat.1063356
- Peng SJ, Chen YW, Yang JY, Wang KW, Tsai JZ. Automated Cerebral Infarct Detection on Computed Tomography Images Based on Deep Learning. Biomedicines. 2022;10(1):122. https://doi.org/10.3390/biomedicines10010122
- Sarmento RM, Vasconcelos FFX, Filho PPR, de Albuquerque VHC. An IoT platform for the analysis of brain CT images based on Parzen analysis. Future Generation Computer Systems. 2020;105:135-147. https://doi.org/10.1016/j.future.2019.11.033
- Omarov B, Tursynova A, Postolache O, et al. Modified UNet Model for Brain Stroke Lesion Segmentation on Computed Tomography Images. Computers, Materials & Continua. 2022;71(3):4701-4717. https://doi.org/10.32604/cmc.2022.020998
- Tursynova A, Omarov B, Sakhipov A, Tukenova N. Brain Stroke Lesion Segmentation Using Computed Tomography Images based on Modified U-Net Model with ResNet Blocks. Int J Onl Eng. 2022;18(13):97-112. https://doi.org/10.3991/ijoe.v18i13.32881
- Kumar A, Ghosal P, Kundu SS, Mukherjee A, Nandi D. A lightweight asymmetric U-Net framework for acute ischemic stroke lesion segmentation in CT and CTP images. Computer Methods and Programs in Biomedicine. 2022;226:107157. https://doi.org/10.1016/j.cmpb.2022.107157
- Surya S, Yamini B, Rajendran T, Narayanan KE. A Comprehensive Method for Identification of Stroke Using Deep Learning. Turkish Journal of Computer and Mathematics Education (TURCOMAT). 2021;12(7):647-652.
- Kuo W, Hӓne C, Mukherjee P, Malik J, Yuh EL. Expert-level detection of acute intracranial hemorrhage on head computed tomography using deep learning. Proc Natl Acad Sci USA. 2019;116(45):22737-22745. https://doi.org/10.1073/pnas.1908021116
- Qiu W, Kuang H, Teleg E, et al. Machine Learning for Detecting Early Infarction in Acute Stroke with Non–Contrast-enhanced CT. Radiology. 2020;294(3):638-644. https://doi.org/10.1148/radiol.2020191193
- Rebouças Filho PP, Sarmento RM, Holanda GB, de Alencar Lima D. New approach to detect and classify stroke in skull CT images via analysis of brain tissue densities. Computer Methods and Programs in Biomedicine. 2017;148:27-43. https://doi.org/10.1016/j.cmpb.2017.06.011
- Neethi AS, Niyas S, Kannath SK, Mathew J, Anzar AM, Rajan J. Stroke classification from computed tomography scans using 3D convolutional neural network. Biomedical Signal Processing and Control. 2022;76:103720. https://doi.org/10.1016/j.bspc.2022.103720
- Dourado Jr CMJM, da Silva SPP, da Nóbrega RVM, da S. Barros AC, Filho PPR, de Albuquerque VHC. Deep learning IoT system for online stroke detection in skull computed tomography images. Computer Networks. 2019;152:25-39. https://doi.org/10.1016/j.comnet.2019.01.019
- Li L, Wei M, Liu B, et al. Deep Learning for Hemorrhagic Lesion Detection and Segmentation on Brain CT Images. IEEE J Biomed Health Inform. 2021;25(5):1646-1659. https://doi.org/10.1109/JBHI.2020.3028243
- Mushtaq MF, Shahroz M, Aseere AM, et al. BHCNet: Neural Network-Based Brain Hemorrhage Classification Using Head CT Scan. IEEE Access. 2021;9:113901-113916. https://doi.org/10.1109/ACCESS.2021.3102740
- Jnawali K, Arbabshirani MR, Rao N, Patel AA. Deep 3D convolution neural network for CT brain hemorrhage classification. In Medical Imaging 2018: Computer-Aided Diagnosis (Vol. 10575, pp. 307-313). SPIE. https://doi.org/10.1117/12.2293725
- Kaya B, Önal M. A CNN transfer learning‐based approach for segmentation and classification of brain stroke from noncontrast CT images. Int J Imaging Syst Tech. 2023;33(4):1335-1352. https://doi.org/10.1002/ima.22864
- Raghavendra U, Pham TH, Gudigar A, et al. Novel and accurate non-linear index for the automated detection of haemorrhagic brain stroke using CT images. Complex Intell Syst. 2021;7(2):929-940. https://doi.org/10.1007/s40747-020-00257-x
- Ozaltin O, Coskun O, Yeniay O, Subasi A. A Deep Learning Approach for Detecting Stroke from Brain CT Images Using OzNet. Bioengineering. 2022;9(12):783. https://doi.org/10.3390/bioengineering9120783
- Xu Y, Holanda G, Souza LFabricio de F, et al. Deep Learning-Enhanced Internet of Medical Things to Analyze Brain CT Scans of Hemorrhagic Stroke Patients: A New Approach. IEEE Sensors J. 2021;21(22):24941-24951. https://doi.org/10.1109/JSEN.2020.3032897
- Yalçın S, Vural H. Brain stroke classification and segmentation using encoder-decoder based deep convolutional neural networks. Computers in Biology and Medicine. 2022;149:105941. https://doi.org/10.1016/j.compbiomed.2022.105941