Have a personal or library account? Click to login
Modified ResNet152v2: Binary Classification and Hybrid Segmentation of Brain Stroke Using Transfer Learning-Based Approach Cover

Modified ResNet152v2: Binary Classification and Hybrid Segmentation of Brain Stroke Using Transfer Learning-Based Approach

Open Access
|Mar 2024

References

  1. Gautam A, Raman B. Towards effective classification of brain hemorrhagic and ischemic stroke using CNN. Biomedical Signal Processing and Control. 2021;63:102178. https://doi.org/10.1016/j.bspc.2020.102178
  2. Jayachitra S, Prasanth A. Multi-Feature Analysis for Automated Brain Stroke Classification Using Weighted Gaussian Naïve Bayes Classifier. J CIRCUIT SYST COMP. 2021;30(10):2150178. https://doi.org/10.1142/S0218126621501784
  3. Karadima O, Rahman M, Sotiriou I, et al. Experimental Validation of Microwave Tomography with the DBIM-TwIST Algorithm for Brain Stroke Detection and Classification. Sensors. 2020;20(3):840. https://doi.org/10.3390/s20030840
  4. Öman O, Mäkelä T, Salli E, Savolainen S, Kangasniemi M. 3D convolutional neural networks applied to CT angiography in the detection of acute ischemic stroke. Eur Radiol Exp. 2019;3(1). https://doi.org/10.1186/s41747-019-0085-6
  5. Abramova V, Clèrigues A, Quiles A, et al. Hemorrhagic stroke lesion segmentation using a 3D U-Net with squeeze-and-excitation blocks. Computerized Medical Imaging and Graphics. 2021;90:101908. https://doi.org/10.1016/j.compmedimag.2021.101908
  6. Mansour RF, Aljehane NO. An optimal segmentation with deep learning based inception network model for intracranial hemorrhage diagnosis. Neural Comput & Applic. 2021;33(20):13831-13843. https://doi.org/10.1007/s00521-021-06020-8
  7. Inkeaw P, Angkurawaranon S, Khumrin P, et al. Automatic hemorrhage segmentation on head CT scan for traumatic brain injury using 3D deep learning model. Computers in Biology and Medicine. 2022;146:105530. https://doi.org/10.1016/j.compbiomed.2022.105530
  8. Arab A, Chinda B, Medvedev G, et al. A fast and fully-automated deep-learning approach for accurate hemorrhage segmentation and volume quantification in non-contrast whole-head CT. Sci Rep. 2020;10(1). https://doi.org/10.1038/s41598-020-76459-7
  9. Chen YT, Chen YL, Chen YY, et al. Deep Learning–Based Brain Computed Tomography Image Classification with Hyperparameter Optimization through Transfer Learning for Stroke. Diagnostics. 2022;12(4):807. https://doi.org/10.3390/diagnostics12040807
  10. URAL AB. Computer-Aided Deep Learning Based Assessment of Stroke From Brain Radiological CT Images. European Journal of Science and Technology. 2022;34:42-52. https://doi.org/10.31590/ejosat.1063356
  11. Peng SJ, Chen YW, Yang JY, Wang KW, Tsai JZ. Automated Cerebral Infarct Detection on Computed Tomography Images Based on Deep Learning. Biomedicines. 2022;10(1):122. https://doi.org/10.3390/biomedicines10010122
  12. Sarmento RM, Vasconcelos FFX, Filho PPR, de Albuquerque VHC. An IoT platform for the analysis of brain CT images based on Parzen analysis. Future Generation Computer Systems. 2020;105:135-147. https://doi.org/10.1016/j.future.2019.11.033
  13. Omarov B, Tursynova A, Postolache O, et al. Modified UNet Model for Brain Stroke Lesion Segmentation on Computed Tomography Images. Computers, Materials & Continua. 2022;71(3):4701-4717. https://doi.org/10.32604/cmc.2022.020998
  14. Tursynova A, Omarov B, Sakhipov A, Tukenova N. Brain Stroke Lesion Segmentation Using Computed Tomography Images based on Modified U-Net Model with ResNet Blocks. Int J Onl Eng. 2022;18(13):97-112. https://doi.org/10.3991/ijoe.v18i13.32881
  15. Kumar A, Ghosal P, Kundu SS, Mukherjee A, Nandi D. A lightweight asymmetric U-Net framework for acute ischemic stroke lesion segmentation in CT and CTP images. Computer Methods and Programs in Biomedicine. 2022;226:107157. https://doi.org/10.1016/j.cmpb.2022.107157
  16. Surya S, Yamini B, Rajendran T, Narayanan KE. A Comprehensive Method for Identification of Stroke Using Deep Learning. Turkish Journal of Computer and Mathematics Education (TURCOMAT). 2021;12(7):647-652.
  17. Kuo W, Hӓne C, Mukherjee P, Malik J, Yuh EL. Expert-level detection of acute intracranial hemorrhage on head computed tomography using deep learning. Proc Natl Acad Sci USA. 2019;116(45):22737-22745. https://doi.org/10.1073/pnas.1908021116
  18. Qiu W, Kuang H, Teleg E, et al. Machine Learning for Detecting Early Infarction in Acute Stroke with Non–Contrast-enhanced CT. Radiology. 2020;294(3):638-644. https://doi.org/10.1148/radiol.2020191193
  19. Rebouças Filho PP, Sarmento RM, Holanda GB, de Alencar Lima D. New approach to detect and classify stroke in skull CT images via analysis of brain tissue densities. Computer Methods and Programs in Biomedicine. 2017;148:27-43. https://doi.org/10.1016/j.cmpb.2017.06.011
  20. Neethi AS, Niyas S, Kannath SK, Mathew J, Anzar AM, Rajan J. Stroke classification from computed tomography scans using 3D convolutional neural network. Biomedical Signal Processing and Control. 2022;76:103720. https://doi.org/10.1016/j.bspc.2022.103720
  21. Dourado Jr CMJM, da Silva SPP, da Nóbrega RVM, da S. Barros AC, Filho PPR, de Albuquerque VHC. Deep learning IoT system for online stroke detection in skull computed tomography images. Computer Networks. 2019;152:25-39. https://doi.org/10.1016/j.comnet.2019.01.019
  22. Li L, Wei M, Liu B, et al. Deep Learning for Hemorrhagic Lesion Detection and Segmentation on Brain CT Images. IEEE J Biomed Health Inform. 2021;25(5):1646-1659. https://doi.org/10.1109/JBHI.2020.3028243
  23. Mushtaq MF, Shahroz M, Aseere AM, et al. BHCNet: Neural Network-Based Brain Hemorrhage Classification Using Head CT Scan. IEEE Access. 2021;9:113901-113916. https://doi.org/10.1109/ACCESS.2021.3102740
  24. Jnawali K, Arbabshirani MR, Rao N, Patel AA. Deep 3D convolution neural network for CT brain hemorrhage classification. In Medical Imaging 2018: Computer-Aided Diagnosis (Vol. 10575, pp. 307-313). SPIE. https://doi.org/10.1117/12.2293725
  25. Kaya B, Önal M. A CNN transfer learning‐based approach for segmentation and classification of brain stroke from noncontrast CT images. Int J Imaging Syst Tech. 2023;33(4):1335-1352. https://doi.org/10.1002/ima.22864
  26. Raghavendra U, Pham TH, Gudigar A, et al. Novel and accurate non-linear index for the automated detection of haemorrhagic brain stroke using CT images. Complex Intell Syst. 2021;7(2):929-940. https://doi.org/10.1007/s40747-020-00257-x
  27. Ozaltin O, Coskun O, Yeniay O, Subasi A. A Deep Learning Approach for Detecting Stroke from Brain CT Images Using OzNet. Bioengineering. 2022;9(12):783. https://doi.org/10.3390/bioengineering9120783
  28. Xu Y, Holanda G, Souza LFabricio de F, et al. Deep Learning-Enhanced Internet of Medical Things to Analyze Brain CT Scans of Hemorrhagic Stroke Patients: A New Approach. IEEE Sensors J. 2021;21(22):24941-24951. https://doi.org/10.1109/JSEN.2020.3032897
  29. Yalçın S, Vural H. Brain stroke classification and segmentation using encoder-decoder based deep convolutional neural networks. Computers in Biology and Medicine. 2022;149:105941. https://doi.org/10.1016/j.compbiomed.2022.105941
DOI: https://doi.org/10.2478/pjmpe-2024-0004 | Journal eISSN: 1898-0309 | Journal ISSN: 1425-4689
Language: English
Page range: 24 - 35
Submitted on: Jul 15, 2023
Accepted on: Feb 3, 2024
Published on: Mar 26, 2024
Published by: Polish Society of Medical Physics
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2024 Nallamotu Parimala, G Muneeswari, published by Polish Society of Medical Physics
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.