Have a personal or library account? Click to login
Analysis of the frequency and type of CT examinations performed in Poland in 2022 Cover

Analysis of the frequency and type of CT examinations performed in Poland in 2022

Open Access
|Feb 2024

References

  1. Mettler Jr. FA, Mahesh M, Bhargavan-Chatfield M, Chambers CE, Elee JG, Frush DP, et al. Patient exposure from radiologic and nuclear medicine procedures in the United States: procedure volume and effective dose for the period 2006–2016. Radiology. 2020;17:192256. https://doi.org/10.1148/radiol.2020192256
  2. European Commission. Medical Radiation Exposure of the European Population. Radiation Protection N° 180. 2015. https://op.europa.eu/en/publication-detail/-/publication/d2c4b535-1d96-4d8c-b715-2d03fc927fc9/language-en
  3. UNSCEAR. United Nations Scientific Committee on the Effects of Atomic Radiation. Sources, Effects and Risks of Ionizing Radiation. Uncertainties in risk estimates for radiation-induced cancer. Annex B. 2015, https://www.unscear.org/docs/publications/2012/UNSCEAR_2012_Annex-B.pdf
  4. Osei EK, Darko J. A survey of organ equivalent and effective doses from diagnostic radiology procedures. International Scholarly Research Notices. 2013;204346. https://doi.org/10.5402/2013/204346
  5. Mettler FA Jr, Huda W, Yoshizumi TT, Mahesh M. Effective doses in radiology and diagnostic nuclear medicine: a catalog. Radiology. 2008;248(1):254-263. https://doi.org/10.1148/radiol.2481071451
  6. Christner JA, Kofler JM, McCollough CH. Estimating effective dose for CT using dose-length product compared with using organ doses: consequences of adopting International Commission on Radiological Protection publication 103 or dual-energy scanning. AJR Am J Roentgenol. 2010;194(4):881-889. https://doi.org/10.2214/AJR.09.3462
  7. Huda W, Ogden KM, Khorasani MR. Converting dose-length product to effective dose at CT. Radiology. 2008;248(3):995-1003. https://doi.org/10.1148/radiol.2483071964
  8. National Research Council. 2006. Health Risks from Exposure to Low Levels of Ionizing Radiation: BEIR VII Phase 2. Washington, DC: The National Academies Press. https://doi.org/10.17226/11340
  9. Shrimpton PC, Wall BF. The increasing importance of X ray computed tomography as a source of medical exposure. Radiation Protection Dosimetry. 1995;57(1-4):413-415. https://doi.org/10.1093/oxfordjournals.rpd.a082572
  10. Balonov MI, Shrimpton PC. Effective dose and risks from medical X-ray procedures. Ann ICRP. 2012;41(3-4):129-141. https://doi.org/10.1016/j.icrp.2012.06.002
  11. Brody AS, Guillerman RP. Don't let radiation scare trump patient care: 10 ways you can harm your patients by fear of radiation-induced cancer from diagnostic imaging. Thorax. 2014;69:782-784. https://doi.org/10.1136/thoraxjnl-2014-205499
  12. Grant E, Brenner A, Sugiyama H, Sakata R, Sadakane A, Utada M, et al. Solid cancer incidence among the life span study of atomic bomb survivors: 1958-2009. Radiat Res. 2017;187:513-537. https://doi.org/10.1667/RR14492.1
  13. Cologne J, Kim J, Sugiyama H, French B, Cullings H, Preston D, et al. Effect of heterogeneity in background incidence on inference about the solid-cancer radiation dose response in atomic bomb survivors. Radiat Res. 2019;192(4):388-398. https://doi.org/10.1667/RR15127.1
  14. Cahoon E, Preston D, Pierce D, Grant E, Brenner A, Mabuchi K, et al. Lung, laryngeal and other respiratory cancer incidence among Japanese atomic bomb survivors: an updated analysis from 1958 through 2009. Radiat Res. 2017;187(5):538-548. https://doi.org/10.1667/RR14583.1
  15. Rehani MM, Melick ER, Alvi RM, Khera RD, Batool-Anwar S, Neilan TG, et al. Patients undergoing recurrent CT exams: assessment of patients with non-malignant diseases, reasons for imaging and imaging appropriateness. Eur Radiol. 2020;30(4):1839-1846. https://doi.org/10.1007/s00330-019-06551-8
  16. Rehani MM, Hauptmann M. Estimates of the number of patients with high cumulative doses through recurrent CT exams in 35 OECD countries. Phys Med. 2020;76:173-176. https://doi.org/10.1016/j.ejmp.2020.07.014
  17. Tabari A, Li X, Yang K, Liu B, Gee MS, Westra SJ. Patient-level dose monitoring in computed tomography: tracking cumulative dose from multiple multi-sequence exams with tube current modulation in children. Pediatr Radiol. 2021;51(13):2498-2506. https://doi.org/10.1007/s00247-021-05160-2
  18. Sodickson A, Baeyens PF, Andriole KP, et al. Recurrent CT, cumulative radiation exposure, and associated radiation-induced cancer risks from CT of adults. Radiology. 2009;251:175-184. https://doi.org/10.1148/radiol.2511081296
  19. Brambilla M, Vassileva J, Kuchcinska A, Rehani MM. Multi-national data on cumulative radiation exposure of patients from recurrent radiological procedures: call for action. Eur Radiol. 2020;30:2993-2501. https://doi.org/10.1007/s00330-019-06528-7
  20. Brambilla M, Cannillo B, D'Alessio A, Matheoud R, Agliata MF, Carriero A, Patients undergoing multiphase CT scans and receiving a cumulative effective dose of ≥ 100 mSv in a single episode of care. Eur Radiol. 2021;31(7):4452-4458. https://doi.org/10.1007/s00330-020-07665-0
  21. Zondervan RL, Hahn PF, Sadow CA, Liu B, Lee SI. Body CT scanning in young adults: examination indications, patient outcomes, and risk of radiation-induced cancer. Radiology. 2013;267(2):460-469. https://doi.org/10.1148/radiol.12121324
  22. Perisinakis K, Seimenis I, Tzedakis A, Papadakis AE, Damilakis J. Triple-rule-out computed tomography angiography with 256-slice computed tomography scanners: patient-specific assessment of radiation burden and associated cancer risk. Invest Radiol. 2012;47(2):109-115. https://doi.org/10.1097/RLI.0b013e31822d0cf3
  23. Loose RW, Popp U, Wucherer M, Adamus R. Medizinische Strahlenexposition und ihre Rechtfertigung an einem Grossklinikum: Vergleich von strahlungs- und krankheitsbedingtem Risiko [Medical radiation exposure and justification at a large teaching hospital: comparison of radiation-related and disease-related risks]. Rofo. 2010;182(1):66-70. https://doi.org/10.1055/s-0028-1109616
  24. Ustawa z dnia 27 sierpnia 2004 r. o świadczeniach opieki zdrowotnej finansowanych ze środków publicznych. Dz.U.2022.0.2561
  25. Rehani MM, Yang K, Melick ER, et al. Patients undergoing recurrent CT scans: assessing the magnitude. Eur Radiol. 2020;30:1828-1836. https://doi.org/10.1007/s00330-019-06523-y
  26. Healthcare in households in 2020. Statistics Poland, Social Surveys Department, Statistical Office in Krakow, Centre for Health and Health Care Statistics. ISBN 978-83-66466-78-4. https://stat.gov.pl/obszary-tematyczne/zdrowie/
  27. Eurostat data: Medical technologies - examinations by medical imaging techniques (CT, MRI and PET) (hlth_co_exam): https://ec.europa.eu/eurostat/web/health/database
  28. Biuletyn Statystyczny Ministerstwa Zdrowia, Centrum Systemów Informatycznych Ochrony Zdrowia, Warszawa 2014
  29. Biuletyn Statystyczny Ministerstwa Zdrowia 2023, Centrum e-Zdrowie, Warszawa 2023. https://ezdrowie.gov.pl/portal/home/badaniai-dane/biuletyn-statystyczny
DOI: https://doi.org/10.2478/pjmpe-2024-0002 | Journal eISSN: 1898-0309 | Journal ISSN: 1425-4689
Language: English
Page range: 11 - 17
Submitted on: Dec 15, 2023
Accepted on: Jan 10, 2024
Published on: Feb 10, 2024
Published by: Polish Society of Medical Physics
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2024 Piotr Pankowski, Małgorzata Wrzesień, published by Polish Society of Medical Physics
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.