Have a personal or library account? Click to login
Advancing Auscultation Education: Signals Visualization as a Novel Tool for Enhancing Pathological Respiratory Sounds Detection Cover

Advancing Auscultation Education: Signals Visualization as a Novel Tool for Enhancing Pathological Respiratory Sounds Detection

Open Access
|Feb 2024

References

  1. Grzywalski T, Piecuch M, Szajek M, et al. Practical implementation of artificial intelligence algorithms in pulmonary auscultation examination. European Journal of Pediatrics. 2019;178(6):883-890. https://doi.org/10.1007/s00431-019-03363-2
  2. Pasterkamp H, Brand PLP, Everard M, Garcia-Marcos L, Melbye H, Priftis KN. Towards the standardisation of lung sound nomenclature. European Respiratory Journal. 2016;47(3):724-732. https://doi.org/10.1183/13993003.01132-2015
  3. Grzywalski T, Szajek M, Hafke-Dys H, et al. Respiratory system auscultation using machine learning - a big step towards objectivisation? In: M-Health/e-Health. European Respiratory Society; 2019: PA2231. https://doi.org/10.1183/13993003.congress-2019.PA2231
  4. Melbye H, Garcia-Marcos L, Brand P, Everard M, Priftis K, Pasterkamp H. Wheezes, crackles and rhonchi: simplifying description of lung sounds increases the agreement on their classification: a study of 12 physicians’ classification of lung sounds from video recordings. BMJ Open Respiratory Research. 2016;3(1):e000136. https://doi.org/10.1136/bmjresp-2016-000136
  5. Welch R, Warren D. Intersensory interactions. In: Boff K, Kaufman L, Thomas J, eds. Handbook of Perception and Performance. Vol 1. Wiley, 1981:251-253.
  6. McGurk H, MacDonald J. Hearing lips and seeing voices. Nature. 1976;264(5588):746-748. https://doi.org/10.1038/264746a0
  7. Sumby WH, Pollack I. Visual Contribution to Speech Intelligibility in Noise. The Journal of the Acoustical Society of America. 1954;26(2):212-215. https://doi.org/10.1121/1.1907309
  8. Aviles-Solis JC, Storvoll I, Vanbelle S, Melbye H. The use of spectrograms improves the classification of wheezes and crackles in an educational setting. Scientific Reports. 2020;10(1):8461. https://doi.org/10.1038/s41598-020-65354-w
  9. Mangione S, Nieman LZ. Pulmonary Auscultatory Skills During Training in Internal Medicine and Family Practice. American Journal of Respiratory and Critical Care Medicine. 1999;159(4):1119-1124. https://doi.org/10.1164/ajrccm.159.4.9806083
  10. Hafke-Dys H, Bręborowicz A, Kleka P, Kociński J, Biniakowski A. The accuracy of lung auscultation in the practice of physicians and medical students. PLOS ONE. 2019;14(8):e0220606. https://doi.org/10.1371/journal.pone.0220606
  11. Likert R. A technique for the measurement of attitudes. Archives of Psychology, 1932;22(140):1-55.
  12. Reichert S, Gass R, Brandt C. Analysis of respiratory sounds: state of the art. Clinical medicine. Circulatory, respiratory and pulmonary medicine. 2008;2:45-58. https://doi.org/10.4137/ccrpm.s530
  13. Pramono R, Bowyer S, Rodriguez-Villegas E. Automatic adventitious respiratory sound analysis: A systematic review. PLOS ONE. 2017;12(5):e0177926. https://doi.org/10.1371/journal.pone.0177926
  14. Kiyokawa H, Greenberg M, Shirota K, Pasterkamp H. Auditory Detection of Simulated Crackles in Breath Sounds. Chest. 2001;119(6):1886-1892. https://doi.org/10.1378/chest.119.6.1886
  15. Wilkins RL, Dexter JR, Murphy RLH, DelBono EA. Lung Sound Nomenclature Survey. Chest. 1990;98(4):886-889. https://doi.org/10.1378/chest.98.4.886
  16. Pasterkamp H, Montgomery M, Wiebicke W. Nomenclature used by health care professionals to describe breath sounds in asthma. Chest. 1987;92(2):346-352. https://doi.org/10.1378/chest.92.2.346
  17. Andrès E, Gass R, Charloux A, Brandt C, Hentzler A. Respiratory sound analysis in the era of evidence-based medicine and the world of medicine 2.0. J Med Life. 2018;11(2):89-106.
  18. Kim Y, Hyon Y, Jung S.S.Respiratory sound classification for crackles, wheezes, and rhonchi in the clinical field using deep learning. Sci Rep. 2021;11:17186. https://doi.org/10.1038/s41598-021-96724-7
  19. Kevat A, Kalirajah A, Roseby R. Artificial intelligence accuracy in detecting pathological breath sounds in children using digital stethoscopes. Respir Res. 2020;21:253. https://doi.org/10.1186/s12931-020-01523-9
  20. Ahmed S, Mitra DK, Nair H.Digital auscultation as a novel childhood pneumonia diagnostic tool for community clinics in Sylhet, Bangladesh: protocol for a cross-sectional study. BMJ Open. 2022;12(2):e059630. https://doi.org/10.1136/bmjopen-2021-059630
  21. Falter M, Gruwez H, Young J. The future is more than a digital stethoscope. European Heart Journal - Digital Health. 2021;2(4):557-558. https://doi.org/10.1093/ehjdh/ztab077
  22. Hoffman HJ, Dobie RA, Losonczy KG et al. Declining Prevalence of Hearing Loss in US Adults Aged 20 to 69 Years. JAMA Otolaryngol Head Neck Surg. 2017;143(3):274-285. https://doi.org/10.1001/jamaoto.2016.3527
DOI: https://doi.org/10.2478/pjmpe-2024-0001 | Journal eISSN: 1898-0309 | Journal ISSN: 1425-4689
Language: English
Page range: 1 - 10
Submitted on: Jul 21, 2023
Accepted on: Dec 18, 2023
Published on: Feb 10, 2024
Published by: Polish Society of Medical Physics
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2024 Anna Katarzyna Pastusiak, Honorata Hafke-Dys, Jędrzej Kociński, Krzysztof Szarzyński, Kamil Janeczek, published by Polish Society of Medical Physics
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.