Have a personal or library account? Click to login
Comparing eDQE and eNEQ metrics – is there an alternative approach to assessing image quality in digital mammography? Cover

Comparing eDQE and eNEQ metrics – is there an alternative approach to assessing image quality in digital mammography?

Open Access
|Sep 2023

References

  1. https://profilaktykaraka.pib-nio.pl/kontrola-jakosci/, in Polish, access: May 2023
  2. Wysocka-Rabin A, Dobrzyńska M, Pasicz K, Skrzyński W, Fabiszewska E. Determination of DQE as a quantitative assessment of detectors in digital mammography: Measurements and calculation in practice. Pol J Med Phys Eng. 2021;27(3):223-232. https://doi.org/10.2478/pjmpe-2021-0027
  3. Dobrzyńska M, Wysocka-Rabin A, Fabiszewska E, Pasicz K, Skrzyński W. New Software for DQE Calculation in Digital Mammography Compliant with IEC 62220–1-2. J Dig Imag 2022;35(5):1069-1078. https://doi.org/10.1007/s10278-021-00546-y
  4. Van Engen R, Young K, Bosmans H, Thijssen H. The European protocol for the quality control of the physical and technical aspect of mammography screening, Luxembourg. 2006
  5. Young K, Johnson B, Bosmans H, Van Engen R. Development of minimum standards for image quality and dose in digital mammography. In: Proceedings of the 7th International Workshop on Digital Mammography, 2005, 149-154.
  6. Young K, Alsager A, Oduko J, Bosmans H, et al. Evaluation of software for reading images of the CDMAM test object to assess digital mammography systems. In: Medical Imaging 2008: Physics of Medical Imaging. Edited by Hsieh, Jiang; Samei, Ehsan. Proceedings of the SPIE, Volume 6913, article id. 69131C. https://doi.org/10.1117/12.770571
  7. Cunningham, I. (2000) Applied Linear-Systems Theory. In: Van Metter RL, Beutel J, Kundel HR (Eds). Handbook of Medical Imaging, Volume 1. Physics and Psychophysics. Bellingham: Press SPIE, 79-159. https://doi.org/10.1117/3.832716.ch2
  8. Samei E, Ranger N, MacKenzie A, Honey I, Dobbins J, Ravin C. Detector or System? Extending the Concept of Detective Quantum Efficiency to Characterize the Performance of Digital Radiographic Imaging Systems. Radiology. 2008;249(3):926-937. https://doi.org/10.1148/radiol.2492071734
  9. Samei E, Ranger N, Mackenzie A, Honey I, Dobbins J, Ravin C. Effective DQE (eDQE) and speed of digital radiographic systems: An experimental methodology. Med Phys. 2009;36(8):3806-3817. https://doi.org/10.1118/1.3171690
  10. Kyprianou I, Rudin S, Bednarek D, Hoffmann K. Study of the Generalized MTF and DQE for a New Microangiographic System. Proc SPIE Int Soc Opt Eng. 2004;5368:349-360. https://doi.org/10.1117/12.533512
  11. Kyprianou I, Rudin S, Bednarek D, Hoffmann K. Generalizing the MTF and DQE to include x-ray scatter and focal spot unsharpness: Application to a new microangiographic system. Medical Physics. 2005;32(2):613-626. https://doi.org/10.1118/1.1844151
  12. Bertolini M, Nitrosi A, Rivetti S, Lanconelli N, Pattacini P, Gonocchi V Iori M. A comparison of digital radiography systems in terms of effective detective quantum efficiency. Med Phys. 2021;39(5):2617-2627. https://doi.org/10.1118/1.4704500
  13. Salvagnini E, Bosmans H, Struelens L, Marshall NW. Effective detective quantum efficiency (eDQE) and effective noise equivalent quanta (eNEQ) for system optimization purposes in digital mammography. Proc SPIE 8313, Medical Imaging: Physics of Medical Imaging. 2012;8313:83130H. https://doi.org/10.1117/12.911193
  14. Salvagnini E, Bosmans H, Struelens L, Marshall NW. Effective detective quantum efficiency for two mammography systems: measurement and comparison against established metrics. Med Phys. 2013;40(1):101916. https://doi.org/10.1118/1.4820362
  15. International Electrotechnical Commission. Medical electrical equipment - Characteristics of digital X-ray imaging devices - Part 1-2: Determination of the detective quantum efficiency - Detectors used in mammography. IEC 62220-1-2:2007.
  16. Saunders RS, Samei E, Jesneck JL, Lo JY. Physical characterization of a prototype selenium-based full field digital mammography detector. Med Phys. 2005;32(2):588-599. https://doi.org/10.1118/1.1855033
  17. Carton AK, Acciavatti R, Kuo J, Maidment ADA. The effect of scatter and glare on image quality in contrast-enhanced breast imaging using an a-Si/CsI(Tl) full-field flat panel detector. Med Phys. 2008;36(3):920-928. https://doi.org/10.1118/1.3077922
  18. Siemens Healthcare GmbH. Online tool for the simulation of X-ray Spectra. https://www.oem-products.siemens-healthineers.com//xray-spectra-simulation. access: May 2023, https://bps.healthcare.siemens-healthineers.com/booneweb/index.html
  19. Thomas JA, Chakrabarti K, Kaczmarek R, Romanyukha A. Contrast-detail phantom scoring methodology. Med Phys. 2005;32:807-814. https://doi.org/10.1118/1.1862097
  20. European Commission. European Guidelines for Quality Assurance in Breast Cancer Screening and Diagnosis. Fourth edition, supplements, 2013. https://data.europa.eu/doi/10.2772/13196
  21. Rowlands J, Yorkston J. Flat Panel Detectors for Digital Radiography. In: Van Metter RL, Beutel J, Kundel HR (Eds). Handbook of Medical Imaging, Volume 1. Physics and Psychophysics. Bellingham: Press SPIE, 223-329. https://doi.org/10.1117/3.832716.ch4
DOI: https://doi.org/10.2478/pjmpe-2023-0018 | Journal eISSN: 1898-0309 | Journal ISSN: 1425-4689
Language: English
Page range: 165 - 177
Submitted on: Jul 6, 2023
Accepted on: Sep 7, 2023
Published on: Sep 26, 2023
Published by: Polish Society of Medical Physics
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2023 Anna Wysocka-Rabin, Magdalena Dobrzyńska, Katarzyna Pasicz, Witold Skrzyński, Ewa Fabiszewska, published by Polish Society of Medical Physics
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.