Have a personal or library account? Click to login
Osseointegration properties of domestic bioactive calcium phosphate ceramics doped with silicon Cover

Osseointegration properties of domestic bioactive calcium phosphate ceramics doped with silicon

Open Access
|Jun 2023

References

  1. Xin H, Xu L, Yuli S, Feng Q, Gang C. Current Trends in Research on Bone Regeneration: A Bibliometric Analysis. Biomed Res Int. 2020: 8787394. https://doi.org/10.1155/2020/8787394
  2. El-Ghannam AR. Advanced bioceramic composite for bone tissue engineering: design principles and structure-bioactivity relationship. J Biomed Mater Res A. 2004;69(3):490-501. https://doi.org/10.1002/jbm.a.30022
  3. Guoke T, Zhiqin L, Jiangming Yu, Xing W, Zhihong T, Xiaojian Y. 2021. Recent Trends in the Development of Bone Regenerative Biomaterials. Front Cell Dev Biol. 2021;9:665813. https://doi.org/10.3389/fcell.2021.665813
  4. Navarro M, Michiardi A, Castano O, Planell J. Biomaterials in orthopaedics. J R Soc Interface. 2008;5(27):1137-1158. https://doi.org/10.1098/rsif.2008.0151
  5. Gloivacki J, Mulliken JB. Demineralized bone implants. Clin Plast Surg. 1985;12(2):233-241. https://doi.org/10.1016/S0094-1298(20)31694-1
  6. Buck BE, Malinin TI, Brown MD. 1989. Bone transplantation and human immunodeficiency virus. An estimate of risk of aquired immunodeficiency syndrome. Clin Orthop Relat Res. 1989;(240):129-136.
  7. Ziman ZZ. Calcium phosphate biomaterials. KhNU named after VN Karazin; 2018.
  8. Barinov SM, Komlev VS. Bioceramics based on calcium phosphates. Nauka; 2005.
  9. Slutsky L, Vetra Y. Biological issues of biomaterials science. Latvian Medical Academy; 2001.
  10. Dorozhkin SV. Biphasic, triphasic and multiphasic calcium orthophosphates. Acta Biomater. 2012;8(3):963-977. https://doi.org/10.1016/j.actbio.2011.09.003
  11. Dorozhkin SV. Calcium orthophosphate-based bioceramics. Materials (Basel). 2013;6(9):3840-3942. https://doi.org/10.3390/ma6093840
  12. LeGeros RZ. Biodegradation and bioresorption of calcium phosphate ceramics. Clin Mater. 1993;14(1):65-88. https://doi.org/10.1016/0267-6605(93)90049-d
  13. LeGeros RZ. Properties of osteoconductive biomaterials: calcium phosphates. Clin Orthop Relat Res. 2002;(395):81-98. https://doi.org/10.1097/00003086-200202000-00009
  14. Nathanael JA, Oyane A, Nakamura M, Koga K, Nishida E, Tanaka S, Miyaji H. Calcium phosphate coating on dental composite resins by a laser-assisted biomimetic process. Heliyon. 2018;4(8):e00734. https://doi.org/10.1016/j.heliyon.2018.e00734
  15. Pepla E, Besharat LK, Palaia G, Tenore G, Migliau G. Nano-hydroxyapatite and its applications in preventive, restorative and regenerative dentistry: a review of literature. Ann Stomatol (Roma). 2014 20;5(3):108-114.
  16. El-Ghannam A. Bone reconstruction: from bioceramics to tissue engineering. Expert Rev Med Devices. 2005;2(1):87-101. https://doi.org/10.1586/17434440.2.1.87
  17. Narayan RJ. The next generation of biomaterial development. Philos Trans R Soc A Math Phys Eng Sci. 2010;368(1917):1831-1837. https://doi.org/10.1098/rsta.2010.0001
  18. Uvarova IV, Gorbik PP, Gorobets SV, Ivashchenko OA, Ulyanchich NV. Nanomaterials for medical purposes. Naukova Dumka; 2014.
  19. Gauthier O, Bouler JM, Aguado E, Pilet P, Daculsi G. Macroporous biphasic calcium phosphate ceramics: influence of macropore diameter and macroporosity percentage on bone ingrowth. Biomaterials. 1998;19(1-3):133-139. https://doi.org/10.1016/s0142-9612(97)00180-4
  20. Samavedi S, Whittington AR, Goldstein AS. Calcium phosphate ceramics in bone tissue engineering: A review of properties and their influence on cell behavior. Acta Biomater. 2013;9(9):8037-8045. https://doi.org/10.1016/j.actbio.2013.06.014
  21. Muñoz-Corcuera M, Bascones-Martinez A, Ripollés RJ. Post-extraction application of beta tricalcium phosphate in alveolar socket. J Osseointegration. 2015;7(1):8-14. https://doi.org/10.23805/jo.2015.07.01.02
  22. Habibovica P, Yuanb H, Van Der Valkb CM, Meijerc G, Van Blitterswijka CA, De Groot K. 3D microenvironment as essential element for osteoinduction by biomaterials. Biomaterials. 2005;26(17):3565-3575. https://doi.org/10.1016/j.biomaterials.2004.09.056
  23. Liu B, Lun DX. 2012. Current application of β-tricalcium phosphate composites in orthopaedics. Orthop Surg. 2012;4(3):139-144. https://doi.org/10.1111/j.1757-7861.2012.00189.x
  24. Ezzahmouly M, Elmoutaouakkil A, Ed-Dhahraouy M, Khallok H, Elouahli A, Mazurier A, ElAlbani A, Hatim Z. Micro-computed tomographic and SEM study of porous bioceramics using an adaptive method based on the mathematical morphological operations. Heliyon. 2019;5(12):e02557. https://doi.org/10.1016/j.heliyon.2019.e02557.
  25. Truite CVR, Noronha JNG, Prado GC, Santos LN, Palácios RS, Do Nascimento A, et al. Bioperformance Studies of Biphasic Calcium Phosphate Scaffolds Extracted from Fish Bones Impregnated with Free Curcumin and Complexed with Cyclodextrin in Bone Regeneration. Biomolecules. 2022;12(3):383. https://doi.org/10.3390/biom12030383
  26. Eliaz N, Metoki N. Calcium Phosphate Bioceramics: A Review of Their History, Structure, Properties, Coating Technologies and Biomedical. Materials (Basel). 2017;10(4):334. https://doi.org/10.3390/ma10040334
  27. Ebrahimi M. Biomimetic principle for development of nanocomposite biomaterials in tissue engineering. In: Inamuddin AM, Asiri AM, ed. Applications of Nanocomposite Materials in Orthopedics. Woodhead; 2018:287-306.
  28. Hu Q, Tan Z, Liu Y, Tao J, Cai Y, Zhang M, Pan H, Xu X, Tang R. Effect of crystallinity of calcium phosphate nanoparticles on adhesion, proliferation, and differentiation of bone marrow mesenchymal stem cells. J. Mater. Chem. 2007;17:4690-4698. https://doi.org/10.1039/B710936A
  29. Dorozhkin SV, Epple M. Biological and medical significance of calcium phosphates. Angew Chem Int Ed Engl. 2002;41(17):3130-3146. https://doi.org/10.1002/1521-3773(20020902)41:17<3130::AID-ANIE3130>3.0.CO;2-1
  30. Astala R, Calderin I, Yin X, Stott MJ. Ab initio simulation of Si-doped hydroxyapatite. Chem Mater. 2005;18(2):413-422. https://doi.org/10.1021/cm051989x
  31. Rau JV, Cacciotti I, Laureti S, Fosra M, Varvaro G, Latini A. Bioactive, nanostructured Si-substituted hydroxyapatite coatings on titanium prepared by pulsed laser deposition. J Biomed Mater Res B Appl Biomater. 2015;103(8):1621-1631. https://doi.org/10.1002/jbm.b.33344
  32. Hing KA, Revell PA, Smith N, Buckland T. Effect of silicon level on rate, quality and progression of bone healing within silicatesubstituted porous hydroxyapatite scaffolds. Biomaterials. 2006;27(29):5014-5026. https://doi.org/10.1016/j.biomaterials.2006.05.039
  33. Szurkowska K, Szeleszczuk L, Kolmas J. Effects of Synthesis Conditions on the Formation of Si-Substituted Alpha Tricalcium Phosphates. Int J Mol Sci. 2020;21(23):9164. https://doi.org/10.3390/ijms21239164
  34. Carlisle EM. Silicon: a possible factor in bone calcification. Science. 1970;167(3916):279-280. https://doi.org/10.1126/science.167.3916.279
  35. Tavafoghi M, Kinsella JM, Gamys CG, Gosselin M, Zhao YF. Silicon-doped hydroxyapatite prepared by a thermal technique for hard tissue engineering applications. Ceram Int. 2018;44(15):17612-17622. https://doi.org/10.1016/j.ceramint.2018.06.071
  36. Kudłacik-Kramarczyk S, Drabczyk A, Głąb M, Dulian P, et al. Mechanochemical synthesis and investigations of calcium titanate powders and their acrylic dispersions. J Eur Ceram Soc. 2014;34(10):2259-2264. https://doi.org/10.3390/ma13153275
  37. Sahalevych AI, Sergiychuk RV, Ozhohin VV, Khrapchuk AYu, Dubovyi YO, Frolov OS. The Modified Procedure of Totally Tubeless PNL. Int J Biol Biomed Engin. 2022;16:82-89. https://doi.org/10.46300/91011.2022.16.10
  38. Sobczak-Kupiec A, Olender E, Malina D, Tyliszczak B. Effect of calcination parameters on behavior of bone hydroxyapatite in artificial saliva and its biosafety. Mater Chem Phys. 2018;206:158-165. https://doi.org/10.1016/j.matchemphys.2017.12.020
  39. Porter AE, Botelho CM, Lopes MA, Santos JD, Best SM, Bonfield W. Ultrastructural comparison of dissolution and apatite precipitation on hydroxyapatite and silicon-substituted hydroxyapatite in vitro and in vivo. J Biomed Mater Res A. 2004;69(4):670-679. https://doi.org/10.1002/jbm.a.30035
  40. Sahalevych A, Sergiychuk R, Ozhohin V, Vozianov O, Khrapchuk A, Dubovyi Y, Frolov O. Mini-percutaneous nephrolithotomy in surgery of Nephrolithiasis. Ukrain J Nephrol Dialys. 2021;(3):44-52.
  41. Sobczak-Kupiec A, Malina D, Tyliszczak B, Piatkowski M, Bialik-Was K, Wzorek Z. Evaluation of bioactivity of Poly(Acrylic acid) - hydroxyapatite - nanogold composites in in vitro conditions. Digest J Nanomat Biostruct. 2012;7(2):459-467.
  42. Tang Q, Brooks R, Rushton N, Best S. Production and characterization of HA and SiHA coatings. J Mater Sci Mater Med. 2010;21(1):173-181. https://doi.org/10.1007/s10856-009-3841-y
  43. Tyliszczak B, Pielichowski K. Novel hydrogels containing nanosilver for biomedical applications - Synthesis and characterization. J Polym Res. 2013;20(7): 191. https://doi.org/10.1007/s10965-013-0191-8
  44. Polatova DSh, Islamov UF, Davletov RR, Savkin AV, Sharipov MM. Oncologic outcomes of pelvic bone sarcomas surgical. Int J Health Sci. 2021;5(3):252-259. https://doi.org/10.53730/ijhs.v5n3.1467
  45. Navruzov SN, Polatova DSh, Gafoor-Akhunov MA, Gabdikarimov KH. The value of marker proteins p53, bcl-2, Ki-67 in predicting the effectiveness of treatment for osteogenic sarcoma of tubular bones. Vopr Onkol. 2012;58(5):691-693.
  46. Das S, Jhingran R, Bains VK, Madan R, Srivastava R, Rizvi I. Socket preservation by beta-tri-calcium phosphate with collagen compared to platelet-rich fibrin: A clinico-radiographic study. Eur J Dent. 2016;10(2):264-276. https://doi.org/10.4103/1305-7456.178298.
  47. Sakibaev KS, Nikityuk DB, Alekseyeva NT, Klochkova SV, Tashmatova NM. Characteristics of muscle mass in women of different constitutions. Res J Pharm Technol. 2019;12(12):6193-7.
  48. Takahashi Y, Marukawa E, Omura K. 2013. Application of a new material (ß-TCP/collagen composites) in extraction socket preservation. Int J Oral Maxillofac Implants. 2013;28(2):444-452. https://doi.org/10.11607/jomi.2794
  49. Gadipelly S, Sultana S, Venkatesh VV, Praveen P. Comparative Radiological Analysis of Efficacy of Beta-tricalcium Phosphate and Beta-tricalciumPhosphate with Platelet-rich Fibrin in MaxillarySinus Augmentation – A Clinical Study. Indian J Dent Adv. 2019; 10(4):171-175. https://doi.org/10.5866/2018.10.10171
  50. Elmohandes W. Evaluation of beta tricalcium phosphate mixed with platelet rich fibrin for rehabilitation of atrophic maxilla with implant installation. J Oral Maxillofac. Surg. 2013;42(10):1261. https://doi.org/10.1016/j.ijom.2013.07.303
  51. Alan H, Kavak G, Nergiz Y, Tunik S, Yavuz I. Comparative Investigation of The Effects of Platelet-Rich Plasma in Sinus Lifting. IAMR. 2015;7(2):1-12.
  52. Simonpieri A, Del Corso M, Sammartino G, Dohan Ehrenfest DM. The relevance of Choukroun’s platelet-rich fibrin and metronidazole during complex maxillary rehabilitations using bone allograft. Part I: a new grafting protocol. Implant Dent. 2009;18(2):102-111. https://doi.org/10.1097/ID.0b013e318198cfD0
  53. Dmytriiev D, Dmytriiev K, Stoliarchuk O, Semenenko A. Multiple organ dysfunction syndrome: What do we know about pain management? A narrative review. Anaesth Pain Intensive Care. 2019;23(1):84-91.
  54. Serniak YP, Sagalevych AI, Frolov OS, Serniak PY, Kryvopustov MS. Extraperitoneoscopic radical prostatectomy after pelvic sugery procedures. Wiad Lek. 2020;73(6):1093-1096.
  55. Peleg M, Garg AK, Mazor Z. Predictability of simultaneous implant placement in the severely atrophic posterior maxilla. Int J Oral Maxillofac Implants. 2006;21(1):94-102.
  56. Barhate UH, Mangaraj M, Jena AK, Sharan J. Applications of Platelet Rich Fibrin in Dental Surgery. Trends Biomater Artif Organs. 2021;35(2):203-213.
  57. Simon BI, Zatcoff AL, Kong JJ, O’Connell SM. Clinical and histological comparison of extraction socket healing following the use of autologous platelet-rich fibrin matrix (PRFM) to ridge preservation procedures emploting demineralized freeze-dried bone allograft material and membrane. Open Dent J. 2009;3:92-99. https://doi.org/10.2174/1874210600903010092
  58. Choukroun J, Diss A, Simonpieri A, Girard MO, Schoeffler C, Dohan SL, Dohan AJJ, Mouhyi J, Dohan DM. Platelet-rich fibrin (PRF): A second-generation platelet concentrate: Histologic evaluations of PRF effects on bone allograft maturation in sinus lift. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2006;101(3):299-303. https://doi.org/10.1016/j.tripleo.2005.07.012
  59. Gupta SJ, Jhingran R, Gupta V, Bains VK, Madan R, Rizvi I. Efficacy of platelet-rich fibrin vs. enamel matrix derivative in the treatment of periodontal intrabony defects. J Int Acad Periodontol. 2014;16(3):86-96.
  60. Mathur A, Bains VK, Gupta V, Jhingran R, Singh GP. Evaluation of intrabony defects treated with platelet-rich fibrin or autogenous bone graft. Eur J Dent. 2015;9(1):100-108. https://doi.org/10.4103/1305-7456.149653
  61. Gupta V, Bains VK, Singh GP, Mathur A, Bains R. Regenerative potential of platelet rich fibrin in dentistry: literature review. AJOHAS. 2011;1(1):22-28.
DOI: https://doi.org/10.2478/pjmpe-2023-0013 | Journal eISSN: 1898-0309 | Journal ISSN: 1425-4689
Language: English
Page range: 113 - 129
Submitted on: Mar 13, 2023
Accepted on: May 30, 2023
Published on: Jun 23, 2023
Published by: Polish Society of Medical Physics
In partnership with: Paradigm Publishing Services
Publication frequency: 4 times per year

© 2023 Vitalii Pidgaietskyi, Nataliia Ulianchych, Volodymyr Kolomiiets, Mykhailo Rublenko, Volodymyr Andriiets, published by Polish Society of Medical Physics
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.