References
- Pallanch J. Physiology: Rhinomanometry. In: Nasal Physiology and Pathophysiology of Nasal Disorders. Springer-Verlag Berlin Heidelberg; 2013:331-344. https://doi.org/10.1007/978-3-642-37250-6_25
- Homoth Medizin Elektronik. Rhino 4000-M. Published 2021. https://www.homoth.de/en/produkte-undloesungen/details/?id=4&titel=rhino-4000m
- Várady T, Martin RR, Cox J. Reverse engineering of geometric models—an introduction. Comput Des. 1997;29(4):255-268. https://doi.org/10.1016/S0010-4485(96)00054-1
- Chrzan R, Urbanik A, Karbowski K, Moskała M, Polak J, Pyrich M. Cranioplasty prosthesis manufacturing based on reverse engineering technology. Med Sci Monit. 2012;18(1):1-6. https://doi.org/10.12659/msm.882186356068622207125
- Quadrio M, Pipolo C, Corti S, et al. Review of computational fluid dynamics in the assessment of nasal air flow and analysis of its limitations. Eur Arch Oto-Rhino-Laryngology. 2014;271(9):2349-2354. https://doi.org/10.1007/s00405-013-2742-324100883
- Faizal WM, Ghazali NNN, Khor CY, et al. Computational fluid dynamics modelling of human upper airway: A review. Comput Methods Programs Biomed. 2020;196:105627. https://doi.org/10.1016/j.cmpb.2020.105627731897632629222
- Schillaci A, Quadrio M. Importance of the numerical schemes in the CFD of the human nose. J Biomech. 2022;138:111100. https://doi.org/10.1016/j.jbiomech.2022.11110035533422
- Corda JV, Shenoy BS, Ahmad KA, et al. Nasal airflow comparison in neonates, infant and adult nasal cavities using computational fluid dynamics. Comput Methods Programs Biomed. 2022;214:106538. https://doi.org/10.1016/j.cmpb.2021.10653834848078
- Siu J, Inthavong K, Dong J, Shang Y, Douglas RG. Nasal air conditioning following total inferior turbinectomy compared to inferior turbinoplasty – A computational fluid dynamics study. Clin Biomech. 2021;81:105237. https://doi.org/10.1016/j.clinbiomech.2020.10523733272646
- Malik J, Otto BA, Zhao K. Computational Fluid Dynamics (CFD) Modeling as an Objective Analytical Tool for Nasal/Upper Airway Breathing. Curr Otorhinolaryngol Rep. 2022;10(1):116-120. https://doi.org/10.1007/s40136-021-00387-x
- Sagandykova NS, Fakhradiyev IR, Sajjala SR, et al. Patient-specific CFD simulation of aerodynamics for nasal pathology: a combined computational and experimental study. Comput Methods Biomech Biomed Eng Imaging Vis. 2021;9(5):470-479. https://doi.org/10.1080/21681163.2020.1858968
- Mataraci F, Karimov U, Ozdemir IB, Yildirim D, Altindag A. CFD simulations and analyses of asymptomatic and symptomatic nasal airway obstructions. J Mech Med Biol. 2022;22(01):9-10. https://doi.org/10.1142/S0219519422500051
- Aoyagi M, Oshima M, Oishi M, et al. Computational fluid dynamic analysis of the nasal respiratory function before and after postero-superior repositioning of the maxilla. PLoS One. 2022;17(4):1-20. https://doi.org/10.1371/journal.pone.0267677904954035482658
- Huang R, Nedanoski A, Fletcher DF, et al. An automated segmentation framework for nasal computational fluid dynamics analysis in computed tomography. Comput Biol Med. 2019;115:103505. https://doi.org/10.1016/j.compbiomed.2019.10350531704374
- Leventon ME, Grimson WEL, Faugeras O. Statistical shape influence in geodesic active contours. Biomed Imaging V - Proc 5th IEEE EMBS Int Summer Sch Biomed Imaging, SSBI 2002. 2002;1:316-323. https://doi.org/10.1109/SSBI.2002.1233989
- Cootes T, Taylor C, Cooper D, Graham J. Active Shape Models-Their Training and Application. Comput Vis Image Underst. 1995;61(1):38-59. https://doi.org/10.1006/cviu.1995.1004
- Keustermans W, Huysmans T, Schmelzer B, Sijbers J, Dirckx JJ. Matlab® toolbox for semi-automatic segmentation of the human nasal cavity based on active shape modeling. Comput Biol Med. 2019;105:27-38. https://doi.org/10.1016/j.compbiomed.2018.12.00830576918
- Cherobin GB, Voegels RL, Gebrim EMMS, Garcia GJM. Sensitivity of nasal airflow variables computed via computational fluid dynamics to the computed tomography segmentation threshold. PLoS One. 2018;13(11). https://doi.org/10.1371/journal.pone.0207178623929830444909
- Quadrio M, Pipolo C, Corti S, et al. Effects of CT resolution and radiodensity threshold on the CFD evaluation of nasal airflow. Med Biol Eng Comput. 2016;54(2-3):411-419. https://doi.org/10.1007/s11517-015-1325-426059996
- Inthavong K, Chetty A, Shang Y, Tu J. Examining mesh independence for flow dynamics in the human nasal cavity. Comput Biol Med. 2018;102:40-50. https://doi.org/10.1016/j.compbiomed.2018.09.01030245276
- Schillaci A, Quadrio M. Importance of the numerical schemes in the CFD of the human nose. J Biomech. 2022;138:111100. https://doi.org/10.1016/j.jbiomech.2022.11110035533422
- Kim SK, Na Y, Kim JI, Chung SK. Patient specific CFD models of nasal airflow: Overview of methods and challenges. J Biomech. 2013;46(2):299-306. https://doi.org/10.1016/j.jbiomech.2012.11.02223261244
- Tretiakow D, Tesch K, Meyer-Szary J, Markiet K, Skorek A. Three-dimensional modeling and automatic analysis of the human nasal cavity and paranasal sinuses using the computational fluid dynamics method. Eur Arch Oto-Rhino-Laryngology. 2020;1:3. https://doi.org/10.1007/s00405-020-06428-3805797233068172
- Tretiakow D, Tesch K, Markiet K, Skorek A. Maxillary sinus aeration analysis using computational fluid dynamics. Sci Rep. 2022;12(1):1-12. https://doi.org/10.1038/s41598-022-14342-3920950135725799
- Berger M, Giotakis AI, Pillei M, et al. Agreement between rhinomanometry and computed tomography-based computational fluid dynamics. Int J Comput Assist Radiol Surg. 2021;16(3):629-638. https://doi.org/10.1007/s11548-021-02332-1805223733677758
- Garcia GJM, Hariri BM, Patel RG, Rhee JS. The relationship between nasal resistance to airflow and the airspace minimal cross-sectional area. J Biomech. 2016;49(9):1670-1678. https://doi.org/10.1016/j.jbiomech.2016.03.051488578527083059
- Schmidt N, Behrbohm H, Goubergrits L, Hildebrandt T, Brüning J. Comparison of rhinomanometric and computational fluid dynamic assessment of nasal resistance with respect to measurement accuracy. Int J Comput Assist Radiol Surg. 2022;17:1519-1529. https://doi.org/10.1007/s11548-022-02699-935821562
- Kim DW, Chung SK, Na Y. Numerical study on the air conditioning characteristics of the human nasal cavity. Comput Biol Med. 2017;86:18-30. https://doi.org/10.1016/j.compbiomed.2017.04.01828499215
- Shamohammadi H, Mehrabi S, Sadrizadeh S, Yaghoubi M, Abouali O. 3D numerical simulation of hot airflow in the human nasal cavity and trachea. Comput Biol Med. 2022;147:105702. https://doi.org/10.1016/j.compbiomed.2022.10570235772328
- Li Q, Wang Z, Wang C, Wang H. Characterizing the respiratory-induced mechanical stimulation at the maxillary sinus fl oor following sinus augmentation by computational fluid dynamics. Front Bioeng Biotechnol. 2022;10:885130. https://doi.org/10.3389/fbioe.2022.885130936054535957638
- Ormiskangas J, Valtonen O, Harju T, Rautiainen M, Kivekäs I. Computational fluid dynamics assessed changes of nasal airflow after inferior turbinate surgery. Respir Physiol Neurobiol. 2022;302:103917. https://doi.org/10.1016/j.resp.2022.10391735500884
- Elcner J, Lizal F, Jedelsky J, Jicha M, Chovancova M. Numerical investigation of inspiratory airflow in a realistic model of the human tracheobronchial airways and a comparison with experimental results. Biomech Model Mechanobiol. 2016;15(2):447-469. https://doi.org/10.1007/s10237-015-0701-126163996
- Croce C, Fodil R, Durand M, et al. In Vitro Experiments and Numerical Simulations of Airflow in Realistic Nasal Airway Geometry. Ann Biomed Eng. 2006;34(6):997-1007. https://doi.org/10.1007/s10439-006-9094-816783655
- Xu X, Wu J, Weng W, Fu M. Investigation of inhalation and exhalation flow pattern in a realistic human upper airway model by PIV experiments and CFD simulations. Biomech Model Mechanobiol. 2020;19(5):1679-1695. https://doi.org/10.1007/s10237-020-01299-332026145
- Van Strien J, Shrestha K, Gabriel S, et al. Pressure distribution and flow dynamics in a nasal airway using a scale resolving simulation. Phys Fluids. 2021;33:011907. https://doi.org/10.1063/5.0036095
- ANSYS. Ansys Fluent Fluid Simulation Software Ansys Fluent Helps Make Better, Faster Decisions Through. Published 2021. https://www.ansys.com/products/fluids/ansys-fluent
- Siemens. Simcenter STAR-CCM +. Published 2021. https://www.plm.automation.siemens.com/global/en/products/simcenter/STAR-CCM.html
- Burgos MA, Sanmiguel-Rojas E, del Pino C, Sevilla-García MA, Esteban-Ortega F. New CFD tools to evaluate nasal airflow. Eur Arch Oto-Rhino-Laryngology. 2017;274(8):3121-3128. https://doi.org/10.1007/s00405-017-4611-y28547013
- Burgos MA, Sevilla García MA, Sanmiguel Rojas E, et al. Virtual surgery for patients with nasal obstruction: Use of computational fluid dynamics (MeComLand®, Digbody® & Noseland®) to document objective flow parameters and optimise surgical results. Acta Otorrinolaringol Esp. 2018;69(3):125-133. https://doi.org/10.1016/j.otorri.2017.05.00528923473
- Burgos MA, Sanmiguel-Rojas E, Singh N, Esteban-Ortega F. DigBody®: A new 3D modeling tool for nasal virtual surgery. Comput Biol Med. 2018;98:118-125. https://doi.org/10.1016/j.compbiomed.2018.05.01629787939
- slicer.org. 3D Slicer Image Computing Platform. Published online 2022. https://www.slicer.org/
- Weiner H. Fused Filament Fabrication – Simply Explained. All3DP. Published 2020. https://all3dp.com/2/fused-filament-fabrication-fff-3d-printing-simply-explained/
- Fiberlogy. TDS-EASY-ABS-EN.pdf. Published 2021. https://fiberlogy.com/en/fiberlogy-filaments/easy-abs/
- Fiberlogy. TDS-BVOH-EN.pdf. Published 2021. https://fiberlogy.com/en/fiberlogy-filaments/bvoh/
- Interacoustics A/S. RhinoStream. Published 2010. http://www.categner.se/PDFblad/RhinoStreamleaflet.pdf
- Munson BR, Young D, Okiishi T. Fundamentals of Fluid Mechanics. John Wiley & Sons, Inc.; 2018.
- Karbowski K, Kopiczak B, Chrzan R, Gawlik J, Szaleniec J. Rhinomanometry vs. CFD - results of measurements and calculations. Mendeley Data, V1. Published online 2022. https://doi.org/10.17632/f4hb8dkzrc.1